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Abstract—Developers of distributed open source projects use 
management and issues tracking tool to communicate. These 
tools provide a large volume of unstructured information that 
makes the triage of issues difficult, increasing developers’ 
overhead. This problem is common to online communities 
based on volunteer participation. This paper shows the 
importance of the content of comments in an open source 
project to build a classifier to predict the participation for a 
developer in an issue. To design this prediction model, we used 
two machine learning algorithms called Naive Bayes and J48. 
We used the data of three Apache Hadoop subprojects to 
evaluate the use of the algorithms. By applying our approach 
to the most active developers of these subprojects we have 
achieved an accuracy ranging from 79% to 96%. The results 
indicate that the content of comments in issues of open source 
projects is a relevant factor to build a classifier of issues for 
developers. 

Content analysis; prediction model; issue tracking classifier;
machine learning. 

I. INTRODUÇÃO

A natureza descentralizada e colaborativa dos projetos de 
software livre provocou a necessidade do uso de repositórios 
e ferramentas de gestão e acompanhamento de tarefas para 
facilitar o planejamento e a comunicação entre os 
desenvolvedores.  

A disponibilização dessas ferramentas à comunidade de 
desenvolvedores e usuários agiliza o processo de detecção de 
falhas e a elaboração de possíveis soluções, melhorando a 
qualidade do software [5][7]. Dentre as informações 
mantidas por essas ferramentas, destacamos a lista de tarefas 
que discute importantes assuntos sobre o projeto, tais como o 
desenvolvimento de novas funcionalidades, falhas, ajuda aos 
usuários, decisões de projeto etc.  

O conteúdo da lista de tarefa forma uma base de 
conhecimento do projeto que pode ser utilizada para auxiliar 
os próprios desenvolvedores. Entretanto, em grandes 
projetos de software livre há um elevado volume de 
mensagens, dificultando a escolha das tarefas em que o 
desenvolvedor deseja participar. Por exemplo, no mês de 
março de 2012 no projeto Apache Hadoop foram enviadas 
1.622 mensagens na lista de tarefas. Assim, os 
desenvolvedores estão propensos a perderem oportunidades 
de participar de tarefas relevantes ao seu perfil devido ao 
grande volume de dados e à dificuldade de seleção. 

A dificuldade de sugerir tarefas relevantes aos 
colaboradores não é um problema exclusivo da comunidade 
de software livre. Problemas semelhantes são tratados pela 
comunidade de sistemas colaborativos, como mostram os 
trabalhos dos autores Cosley et al. [3] e Abel et al. [6].  

Este trabalho mostra a importância do conteúdo dos 
comentários em um projeto de software livre para construção 
de um classificador para predizer a participação de um 
desenvolvedor em uma determinada tarefa. O classificador é 
baseado na análise de conteúdo do vocabulário utilizado pelo 
desenvolvedor nas mensagens enviadas à lista de tarefas.  

Para realizar a análise foram coletados dados do projeto 
Apache Hadoop1 da Apache Software Foundation que está 
dividido em três subprojetos: Hadoop Commons, Hadoop 
Distributed File System (HDFS) e Hadoop MapReduce. Essa 
análise foi realizada com objetivo de responder à seguinte 
questão de pesquisa: 

Q1 - É possível predizer a participação dos 
desenvolvedores mais ativos na lista de tarefas (issue 
tracking) com base na sua história de participação? 

Para cada desenvolvedor foi construído um classificador 
que prediz sua participação em uma determinada tarefa 
baseado no vocabulário utilizado em outras participações. 

Na composição do classificador proposto comparamos os 
resultados obtidos pelo algoritmo J48 e pelo classificador 
bayesiano, detalhados em [9][12]. Para cada desenvolvedor, 
as tarefas foram divididas em duas classes: “Participar” ou 
“Não participar”. Em seguida, para a análise do 
desenvolvedor, definimos aleatoriamente um conjunto de 
dados para treino e outro para teste. A proporção utilizada 
para a definição do conjunto de treino e de teste foi 80-20, 
respectivamente. 

Na Seção 2 são apresentados os trabalhos relacionados. 
Na Seção 3 é apresentado o método de pesquisa utilizado. Os 
resultados são apresentados na Seção 4. Por fim, na Seção 5 
são apresentadas as discussões, conclusões e trabalhos 
futuros. 

II. TRABALHOS RELACIONADOS

Uma desvantagem do uso de ferramentas de gestão está 
diretamente relacionada à sobrecarga de trabalho atribuída 
aos desenvolvedores mais experientes na triagem das 

                                                          
1 http://hadoop.apache.org
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informações fornecidas pela comunidade [7]. Neste sentido, 
o levantamento descrito nesta seção preconiza trabalhos que 
abordam a redução da carga de trabalho por meio da 
indicação de quais atividades o desenvolvedor deve 
participar. 

Matter et al. [4] apresentam uma abordagem automática 
para realizar a triagem de relatórios de falhas atribuindo a 
tarefa ao desenvolvedor com a melhor expertise  para lidar 
com a falha. Os autores construíram um modelo de expertise 
para cada desenvolvedor baseado no seu código-fonte 
produzido. Usando essa abordagem, reportaram um 
precision de 33.6% e recall 71.0% no projeto Eclipse. 
Seguindo a mesma linha, os trabalhos [11][1] constroem 
modelos de expertise baseados nas alterações realizadas no 
software pelo desenvolvedor.  

Uma abordagem semelhante é apresenta por Cubranic e 
Murphy [2], que propõem a aplicação do classificador 
bayesiano para auxiliar a triagem de falhas. No processo de 
classificação, os autores realizaram uma caracterização 
textual considerando a descrição das falhas e obtiveram 30% 
de acurácia na aplicação dessa abordagem em um grande 
projeto de software livre.  

Anvik et al. [8] apresentam uma abordagem que 
automatiza parte do processo de triagem dos relatórios de 
falhas. Baseado no conjunto de desenvolvedores 
recomendado pelo algoritmo de aprendizagem de máquina 
SVN, o responsável pela triagem indica um desenvolvedor 
mais qualificado para resolução de falhas. A precision
alcançada com essa abordagem foi de 57% e 64% para os 
projetos Eclipse e Firefox, respectivamente.  

Ibrahim et al. [13] apresentam um trabalho com uma 
abordagem semelhante à nossa, no entanto, aplicado para 
predições em lista de e-mails.  Os autores desenvolveram um 
modelo que prediz a participação do desenvolvedor em uma 
discussão por e-mail. Esse modelo é desenvolvido baseado 
no comportamento histórico do desenvolvedor. Esse trabalho 
também mostrou que a quantidade de mensagens de uma 
discussão, o conteúdo, o remetente e a época em que a 
mensagem é submetida influenciam o comportamento do 
desenvolvedor. O classificador bayesiano e a árvore de 
decisão foram usadas para aplicar a abordagem em listas de 
e-mails dos projetos da Apache, PostGreSQL e Python.  

As abordagens apresentadas nesta seção buscam fornecer 
meios automatizados para reduzir a carga de trabalho dos 
desenvolvedores em projetos de software livre e possuem 
características similares às apresentadas neste trabalho. No 
entanto, nossa abordagem procura recomendar tarefas ao 
desenvolvedor baseadas no seu envolvimento com o projeto 
em listas anteriores. O desenvolvedor pode colaborar na lista 
de tarefas indicada pela abordagem de diversas formas, não 
se limitando a realizar commits ou encaminhar novos 
patches. 

III. MÉTODO DE PESQUISA

O método é composto de três passos: coleta, preparação e 
classificação dos dados. 

A. Coleta de Dados 
Primeiramente realizamos a coleta dos dados da lista de 

tarefas no website dos projetos mencionados que estão 
resumidos na Tabela 1. Utilizamos uma amostra dos dez 
desenvolvedores que mais publicaram comentários em 
tarefas de cada projeto. Essa amostra representa os 
desenvolvedores que enviaram mais de um terço do total de 
comentários de cada projeto. 

TABELA 1. RESUMO DOS DADOS COLETADOS.

Subprojetos Hadoop 
Commons HDFS Hadoop 

MapRaduce
Tarefas (issues) 7.720 2.980 3.591

Comentários 76.065 34.051 36.987
Desenvolvedores 1.035 512 614
Inicio da coleta 01-2006 03-2006 05-2006
Fim da coleta 04-2012 04-2012 04-2012

% de comentários 
dos desenvolvedores 
mais ativos (TOP10)

37,3% 57,2% 39%

Para evitar ambiguidade definimos formalmente os dados 
coletados. Uma lista de tarefas de um determinado projeto p
é definida pelo conjunto: 

ISSUESp = {i1, i2, i3,…, in},

em que n é a quantidade de tarefas do projeto p.  Podemos 
ainda representar o conjunto de todos os desenvolvedores de 
um determinado projeto p como: 

AUTHORSp = {a1, a2, a3,…, am },

em que m é a quantidade de desenvolvedores que 
comentaram em alguma tarefa ik � ISSUEp para qualquer    
1 ≤ k ≤ n. Também podemos representar todos os 
comentários de um projeto p como: 

Cp = {c1, c2, c3,...,cq },

em que q é a quantidade de comentários publicados no 
projeto p. Uma tarefa ik � ISSUEp com 1 ≤ k ≤ n é
representada pela tripla: 

ik = <Cik, din, dout>,

em que Cik � Cp é o subconjunto de todos os comentários 
publicados na tarefa ik e din e dout são as datas da publicação 
do primeiro e último comentário, respectivamente.  

Um desenvolvedor ar � AUTHORSp sendo 1 ≤ r ≤ m é
representado pela tripla: 

ar = <Car, din, dout>,

em que Car � Cp é o subconjunto de todos comentários que 
esse desenvolvedor publicou no projeto e din e dout são as 
datas da publicação do primeiro e último comentário desse 
desenvolvedor. Dessa forma, podemos notar que o conjunto 
de todos os comentários do projeto p é igual à união de todos 
os comentários das tarefas, ou ainda, é igual à união de todos 
os comentários dos desenvolvedores, conforme: 

Cp = Ci1� Ci2 � ... � Cin = Ca1 � Ca2 � ... � Cam , 
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Um comentário c � Cp é representado pela tripla:  

c = < Tc, d, a >,

em que Tc é conjunto de tokens que compõem o comentário 
c, d é a data de publicação e a � AUTHORSp é o 
desenvolvedor que publicou esse comentário. 

Podemos representar o conjunto de todos os tokens do
projeto p como: 

WORLDp = T1� T2 � ... � Tq | �c � Cp ,

Analogamente, podemos representar todos os tokens de 
uma tarefa ik � ISSUEp como: 

TOKENSk = T1� T2 � ... � Tw | �c � Cik ,

em que w é a quantidade de elementos do conjunto Cik.

B. Preparação dos Dados 
O processo de preparação de dados consistiu em 

organizar e criar o conjunto WORLDp dos subprojetos da 
Apache Hadoop. O primeiro passo foi identificar e remover 
da nossa amostra os comentários que foram inseridos por 
sistemas de software de integração contínua, tal como o 
Hudson2. Com esse simples passo foi possível remover uma 
grande quantidade de comentários irrelevantes a este 
trabalho como apresentado na Tabela 2. 

TABELA 2. RESUMO DO PROCESSO DE PREPARAÇÃO DOS DADOS

Comentário Hadoop 
Commons HDFS Hadoop 

MapRaduce
% de comentários extraídos 18,8 24,6      29,9

#comentários restantes 61.769 25.688 25.932
#tokens 59.733 27.774 31.294

Em seguida, utilizamos o Apache Lucene™ 3  (AL) na 
versão 3.5 para retirar as marcações HTML dos comentários, 
realizar o processo de tokenização, extração dos stopwords e
lematização (stemming). Consideramos também urls e nomes 
de pacotes de código-fonte como tokens únicos. A Tabela 2 
mostra o tamanho do conjunto WORLDp de cada projeto. 

Entendemos que o processo de preparação dos dados 
ainda pode ser mais bem explorado a fim de melhorar os 
resultados apresentados neste trabalho. Outro aspecto de 
estudo, é o fato de existir trechos de comentários que são 
compostos por código-fonte e podem ser tratados de uma 
melhor maneira. 

C. Classificação 
Após os dados terem sido preparados, para cada 

desenvolvedor do projeto, dividimos aleatoriamente o 
conjunto ISSUESp em dois subconjuntos, um para treino com 
80% das tarefas e outro para teste com os 20% restantes. Os 
dois subconjuntos foram utilizados para classificar se o 
desenvolvedor participa ou não em uma determinada tarefa 
baseado em seu conteúdo. Para a predição utilizamos dois 
algoritmos: o algoritmo de árvore de decisão J48 e o 
algoritmo de classificação bayesiana Naïve Bayes, ambos 

                                                          
2 http://hudson-ci.org/
3 http://lucene.apache.org/

disponibilizados pelo WEKA4, um ambiente para análise de 
conhecimento que implementa vários algoritmos de 
aprendizado de máquina.  

Para a execução dos algoritmos no ambiente WEKA 
utilizamos um computador com processador de quatro 
núcleos com 2.9 GHz, 8GB de memória RAM e um sistema 
operacional de 64 bits. Devido à grande quantidade de tokens
do projeto Hadoop Commons e esse limite de memória 
RAM, não foi possível executar os algoritmos com todos os 
dados desse projeto. Então, para viabilizar a análise 
reduzimos o conjunto WORLDcommon para 70% do original 
por meio de um algoritmo que calcula a relevância de cada t
� WORLDcommon de acordo com a equação [10]: 

�����(�) = ��(�, 	) ∗ �	�(�, �)
Vale ressaltar que essa redução foi realizada somente 

para o projeto Hadoop Common. Para os demais projetos 
mantivemos o conjunto WORLDp inalterado. Os resultados 
são apresentados na Seção 4. 

Para execução dos algoritmos os subconjuntos de dados 
de treino e teste foram formatados em uma matriz de entrada 
como ilustra a Figura 1. 

As linhas da matriz são representadas pelos elementos do 
conjunto ISSUESp e as colunas, salvo a última, são 
representadas pelos elementos do conjunto WORLDp. A 
matriz foi construída seguindo duas regras. A Regra 1
estabelece o preenchimento das células da matriz, menos as 
da última coluna.  
Regra 1: Seja uma tarefa ik � ISSUESp e um token tj �
WORLDp  


���, ��� = �1      ��   ��  ∈  �������
0      ��   ��  ∉  �������

Com isso, todos os tokens pertencentes à tarefa são 
assinalados com 1.  

As células da coluna AA, que representa o atributo alvo a 
ser predito, são preenchidas respeitando a Regra 2. 
Regra 2: Seja uma tarefa ik � ISSUESp e um desenvolvedor 
ar � AUTHORSp


[��, ��] �1      ��  ��� ∩ ��!  ≠  ∅
0      ��   ��� ∩ ��! =  ∅

                                                          
4 http://www.cs.waikato.ac.nz/ml/weka

Figura 1. Matriz de entrada dos 
dados
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Aplicamos dois filtros adicionais nos dados de entrada. O 
primeiro filtro foi aplicado tanto no subconjunto de treino 
quanto no de teste, descartando as tarefas em que o 
desenvolvedor não teve a oportunidade de participar. Para 
isso, definimos o escopo para a tarefa como o intervalo entre 
a publicação da primeira e da última mensagem publicada. 
Também definimos o escopo para o desenvolvedor como o 
intervalo entre a sua primeira e a última mensagem 
publicada, independente da tarefa. Esse filtro respeita o que 
foi estabelecido na Regra 3.  
Regra 3: Dado uma tarefa ik � ISSUESp e um desenvolvedor 
ar � AUTHORSp  

�	���$��$�(��),   �� ��[	%&'] < $![	�*] �+ ��[	�*] > $![	%&']
-$.���(��),      �$�� ��.��á���                                                    

Nessa abordagem identificamos seis tipos de tarefas 
como ilustra a Figura 2. 

As tarefas do tipo 1 são aquelas que começam antes do 
início do escopo do desenvolvedor, mas terminam dentro do 
escopo. As tarefas do tipo 2 são aquelas que iniciam dentro 
do escopo do desenvolvedor, mas terminam fora. As tarefas 
do tipo 3 estão totalmente contidas no escopo do
desenvolvedor. As tarefas do tipo 4 permeiam por todo 
escopo do desenvolvedor, mas iniciam e terminam fora. As 
tarefas do tipo 5 começam e terminam antes do início do 
escopo do desenvolvedor. E por último, as tarefas do tipo 6
iniciam e terminam após o término do escopo do 
desenvolvedor. Com esses seis tipos de tarefas, entendemos 
que o desenvolvedor teve, em algum momento, a 
oportunidade de colaborar com as tarefas dos tipos 1, 2, 3 e 
4. As tarefas dos tipos 5 e 6 foram descartadas por estarem 
totalmente fora do escopo do desenvolvedor, não oferecendo 
a oportunidade de participação. Portanto, para a predição de 
cada desenvolvedor, o universo de tarefas do projeto foi 
reduzido de acordo com seu escopo.  

O segundo filtro, aplicado somente no subconjunto de 
teste, descarta todos os tokens proferidos pelo desenvolvedor 
em cada tarefa. Utilizamos essa abordagem baseado na 
premissa de que os tokens proferidos pelo desenvolvedor 
darão vantagem à tarefa na predição, por fazerem parte de 
seu vocabulário e, provavelmente, terem sido utilizados no 
treinamento. Dessa forma, esse filtro tem como objetivo 
evitar um viés na predição. 

IV. RESULTADOS

As Tabelas 3, 4 e 5 mostram as medidas de recall,
precision e acurácia obtidas pelo algoritmo de classificação 
J48 nos subprojetos Hadoop Common, MapReduce e HDFS, 
respectivamente. Os resultados alcançados pelo algoritmo 
J48 foram superiores ao algoritmo Naïve Bayes atingindo 
uma melhoria da taxa média da acurácia de 11,2%, 9,6% e 
13,3% para os subprojetos Hadoop Common, MapReduce e 
HDFS respectivamente. Por esse motivo, os resultados do 
algoritmo Naïve Bayes foram omitidos. 

Mesmo possuindo as informações sobre o nome e dados 
de acesso dos desenvolvedores analisados, optamos por 
preservar suas identidades e referenciá-los apenas por Top-1
a Top-10. Desta forma, o desenvolvedor Top-1 é aquele que 
mais postou comentários na lista de tarefas do projeto.  

A Tabela 3 apresenta o resultado da predição dos 
desenvolvedores do subprojeto Hadoop Common e mostra 
que as taxas de recall e precision para a classe “Não 
participar” são mais satisfatórias que as taxas da classe 
“Participar”. Esse comportamento é similar ao apresentado 
nas Tabelas 4 e 5. A taxa de recall para a classe “Participar” 
varia entre 0,2 e 0,54 com precision de 0,53 e 0,91. A classe 
“Não participar” apresenta recall entre 0,96 e 1 com taxa de 
precision variando entre 0,83 e 0,95.  

TABELA 3. TAXAS DE RECALL, PRECISION E ACURÁCIA – J48 - HADOOP 
COMMON.

Desenvolvedor Participar Não participar Acuráciarecall precision recall precision
Top-1 0.30 0.76 0.97 0.83 0.83
Top-2 0.37 0.73 0.98 0.90 0.88
Top-3 0.30 0.62 0.96 0.86 0.84
Top-4 0.39 0.84 0.99 0.92 0.92
Top-5 0.34 0.75 0.99 0.92 0.91
Top-6 0.30 0.61 0.98 0.92 0.91
Top-7 0.40 0.68 0.98 0.95 0.94
Top-8 0.20 0.53 0.98 0.90 0.89
Top-9 0.54 0.76 0.98 0.95 0.93
Top-10 0.39 0.91 1.00 0.95 0.95

A Tabela 4 apresenta o resultado da predição para os 
desenvolvedores do subprojeto MapReduce. Destacamos o 
desenvolvedor Top-9 que apresentou menor taxa de recall de 
toda nossa amostra. Apesar disso, a média da taxa de recall e
precision mantiveram-se semelhantes ao subprojeto Hadoop 
Commons, como indica a Tabela 6. 

TABELA 4. TAXAS DE RECALL, PRECISION E ACURÁCIA – J48 -
MAPREDUCE.

Desenvolvedor Participar Não participar Acuráciarecall precision recall precision
Top-1 0.47 0.83 0.97 0.88 0.87
Top-2 0.29 0.66 0.97 0.86 0.84
Top-3 0.38 0.76 0.99 0.93 0.92
Top-4 0.34 0.76 0.98 0.91 0.91
Top-5 0.32 0.93 1.00 0.91 0.91
Top-6 0.38 0.83 0.99 0.94 0.94
Top-7 0.41 0.86 0.99 0.92 0.92
Top-8 0.36 0.71 0.98 0.93 0.92
Top-9 0.07 0.63 1.00 0.90 0.90

Top-10 0.25 0.79 1.00 0.95 0.95

Figura 2. Tipos de Tarefas.
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A Tabela 5 apresenta o melhor resultado com as maiores 
taxas de recall e de precision.  Entre os desenvolvedores do 
subprojeto HDFS, destacamos o Top-10 que apresentou a 
maior taxa de recall na classe “Participar” da amostra.

TABELA 5. TAXAS DE RECALL, PRECISION E ACURÁCIA – J48 - HDFS.

Desenvolvedor Participar Não participar Acuráciarecall precision recall precision
Top-1 0.46 0.78 0.94 0.79 0.79
Top-2 0.33 0.77 0.97 0.81 0.80
Top-3 0.45 0.77 0.97 0.88 0.87
Top-4 0.41 0.73 0.95 0.84 0.83
Top-5 0.31 0.63 0.97 0.90 0.88
Top-6 0.31 0.73 0.99 0.93 0.93
Top-7 0.35 0.87 0.99 0.85 0.85
Top-8 0.43 0.63 0.97 0.93 0.91
Top-9 0.56 0.71 0.99 0.97 0.96

Top-10 0.62 0.97 1.00 0.95 0.95

A Tabela 6 apresenta um resumo com as médias das 
taxas de recall, precision e acurácia. As médias das acurácias 
por projeto foram 0,90, 0,91 e 0,87. No entanto, como visto 
nas tabelas anteriores, as medidas de acurácia variaram entre 
0,79 e 0,96, considerando todos os subprojetos. 

TABELA 6. TAXAS MÉDIAS DE RECALL, PRECISION E ACURÁCIA - J48.

Projetos Participar Não participar Acuráciarecall precision recall precision
Commons 0.34 0.71 0.98 0.91 0.90

MapReduce 0.33 0.78 0.99 0.91 0.91
HDFS 0.41 0.76 0.97 0.89 0.87

A Figura 3 apresenta três gráficos que mostram uma 
comparação entre os resultados das acurácias alcançadas 
com os subprojetos em estudo para o Naïve Bayes e o J48. 
Nota-se que o algoritmo J48 é melhor que o algoritmo Naïve 
Bayes para todos os casos. 

A Figura 4 apresenta o gráfico que mostra a relação entre 
a acurácia obtida pelo algoritmo J48 e os desenvolvedores 
que estão ordenados de acordo com a taxa de participação. 

Figura 4. Relação da acurácia dos dez desenvolvedores entre os três 
projetos. 

V. DISCUSSÃO E CONCLUSÃO

Em nossa análise utilizamos os comentários publicados 
nas discussões das listas de tarefas em três subprojetos de um 
software livre. A amostra foi limitada aos dez 
desenvolvedores que mais publicaram comentários. Não 
podemos afirmar que os mesmos resultados serão obtidos 
para os desenvolvedores com menos participações, pois o 
vocabulário desses desenvolvedores seria menor. Um 
possível trabalho futuro é aplicar o algoritmo para uma 
amostra maior de desenvolvedores para verificar a 
generalização da abordagem. Os resultados obtidos pelo 
classificador elaborado usando os métodos descritos na 
Seção 2 visam responder à seguinte questão de pesquisa: 

Q1 - É possível predizer a participação dos 
desenvolvedores mais ativos na lista de tarefas (issue 
tracking) com base na sua história de participação? 

As Tabelas 3, 4, 5 e 6 mostraram o resultado da predição 
com uma alta acurácia, variando de 0,79 a 0,96. No entanto, 
esse classificador apresenta uma baixa taxa de recall para a 
classe “Participar”. Entendemos que isso é uma deficiência 
do nosso classificador, visto que ao não atribuir ao 
desenvolvedor uma tarefa em que poderia participar, 
deixamos de aproveitar o seu potencial e conhecimento. 
Entretanto, os resultados mostram que, dentre as tarefas 
indicadas ao desenvolvedor, a taxa de precision apresentou 
uma média de 0,75 variando entre 0,53 e 0,97. Suspeitamos 
que melhores resultados para caracterizar um desenvolvedor 
possam ser obtidos quando outros fatores, tais como os 
apresentados em [5], são combinados à nossa abordagem. 

A alta acurácia do nosso classificador deve-se aos 
resultados obtidos com a classe “Não participar”. Essa 
participação é significativa, visto que nosso classificador foi 
satisfatório ao identificar tarefas que não são de interesse ou 
do conhecimento do desenvolvedor. Comportamento 
semelhante das classes “Participar” e “Não participar” pode 
ser visto em Ibrahim et al. [13] que apresentaram resultados 
de um classificador bayesiano para predizer a participação de 
um desenvolvedor em lista de e-mails.  

Ao comparar nossa abordagem com outros trabalhos 
relacionados, vimos que apresentamos melhores resultados 
do que aqueles obtidos por Cubranic e Murphy [2]. No 
entanto, esse trabalho procura identificar qual desenvolvedor 
é o mais adequado para resolver uma falha específica no 
projeto. Como nosso objetivo é predizer a participação de 
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um desenvolvedor em uma determinada tarefa, não é 
possível comparar os resultados de maneira tão simplificada.  

Neste trabalho ainda exploramos o desempenho do 
classificador construído pelo algoritmo Naïve Bayes. No 
entanto, como demostrado pela Figura 3, o algoritmo J48 
apresentou melhores valores de acurácia sobre o algoritmo 
Naïve Bayes para os dez desenvolvedores em todos os 
subprojetos. A maior diferença (14,5%) foi apresentada pelo 
desenvolvedor Top-3 do projeto HDFS e a menor diferença 
(4,7%) pelo desenvolvedor Top-10 do subprojeto 
MapReduce. Ao aplicarmos o algoritmo J48, obtivemos um 
aumento da acurácia de 11,2%, 9,6% e 13,3% em média para 
o Hadoop Common, MapReduce e HDFS, respectivamente.  

A Figura 4 apresenta um gráfico que faz uma relação 
entre a participação dos desenvolvedores e a taxa da acurácia 
do classificador construído pelo algoritmo J48. Podemos 
notar que o comportamento entre a taxa de acurácia dos dez 
desenvolvedores mais ativos é semelhante nos três projetos. 
Um resultado não esperado pode ser visto no crescimento 
dos valores de acurácia. Esse crescimento indica que entre os 
desenvolvedores mais ativos da amostra existe uma 
tendência de quanto menor é a participação melhor é a 
acurácia na classificação de sua participação ou não em 
tarefas. Vale ressaltar que mesmo o último entre os dez 
desenvolvedores, apresenta uma taxa de participação é muito 
significativa no projeto. Esse comportamento de crescimento 
foi encontrado nos três subprojetos analisados, no entanto, é 
necessário mais estudos para investigar se também ocorre 
para outros conjuntos de desenvolvedores. 

Algumas limitações e ameaças à validade dos resultados 
são: (i) Os resultados da análise são específicos para os 
projetos analisados, não podendo ser generalizados. Os 
projetos podem possuir diferentes características decorrentes 
da estrutura organizacional ou do domínio da aplicação. A 
análise com uma maior quantidade de projetos, ou com o 
ecossistema do Apache Software Foundation tornaria os 
resultados mais genéricos.  (ii) A análise foi realizada 
baseada em dados coletados desde a criação do projeto e no 
início não havia uma separação formal dos subprojetos. 
Assim, suspeitamos que algumas das tarefas que eram 
destinadas ao HDFS ou ao MapReduce possam ter sido 
publicadas na lista do Hadoop Common. (iii) Devido a uma 
restrição imposta pela limitação física do equipamento 
utilizado para executar os algoritmos, tivemos que reduzir 
em 30% o conjunto WORLDcommon. (iv) O classificador tem 
como base a análise do vocabulário do desenvolvedor 
utilizado em comentários anteriores, e pode não proporcionar 
os mesmos resultados para novos desenvolvedores. (v) A 
abordagem para a extração dos tokens que compõem o 
conjunto WORLDp pode ser melhor explorada, 
principalmente com relação aos códigos-fonte publicados 
nas tarefas. (vi) Não é possível também afirmar que a 
abordagem tem os mesmos resultados para os 
desenvolvedores com menor quantidade de comentários 
enviados. Como dito anteriormente, uma análise com uma 
amostra maior e com desenvolvedores escolhidos 
aleatoriamente deve ser conduzida futuramente para verificar 
a efetividade da abordagem em outros casos. 

Em resumo apresentamos resultados que indicam que o 
conteúdo dos comentários publicados em tarefas (issues) de 
projetos de software livre é um importante fator para 
construir um classificador de predição de tarefas aos 
desenvolvedores. Baseado neste fator, mostramos que é 
possível construir um classificador com alta acurácia que 
pode diminuir a carga de trabalho do desenvolvedor 
indicando a sua participação em tarefas de seu interesse. 
Entretanto, reconhecemos que a taxa de recall obtida para a 
classe “Participar” não foi satisfatória. Por último, 
mostramos que nossa abordagem é mais efetiva se 
utilizarmos o algoritmo de classificação J48 em comparação 
ao Naïve Bayes. 

A respeito dos trabalhos futuros, além daqueles já citados 
na análise das ameaças à validade, entendemos que outros 
fatores que auxiliem a caracterização dos desenvolvedores 
devem ser explorados e combinados para melhorar o 
desempenho da predição. Pretende-se ainda comparar a 
nossa abordagem com outras apresentadas na literatura. 
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