
Prediction of Developer Participation in Issues of Open Source Projects
Predição da Participação de Desenvolvedores em Tarefas em Projetos de Software Livre

André Luis Schwerz, Rafael Liberato,
Igor Scaliante Wiese, Igor Steinmacher

Universidade Tecnológica Federal do Paraná (UTFPR)
Câmpus Campo Mourão

{andreluis,liberato,igor,igorfs}@utfpr.edu.br

Marco Aurélio Gerosa, João Eduardo Ferreira
Universidade de São Paulo

Instituto de Matemática e Estatística (IME)
São Paulo - SP

{gerosa, jef}@ime.usp.br

Abstract—Developers of distributed open source projects use
management and issues tracking tool to communicate. These
tools provide a large volume of unstructured information that
makes the triage of issues difficult, increasing developers’
overhead. This problem is common to online communities
based on volunteer participation. This paper shows the
importance of the content of comments in an open source
project to build a classifier to predict the participation for a
developer in an issue. To design this prediction model, we used
two machine learning algorithms called Naive Bayes and J48.
We used the data of three Apache Hadoop subprojects to
evaluate the use of the algorithms. By applying our approach
to the most active developers of these subprojects we have
achieved an accuracy ranging from 79% to 96%. The results
indicate that the content of comments in issues of open source
projects is a relevant factor to build a classifier of issues for
developers.

Content analysis; prediction model; issue tracking classifier;
machine learning.

I. INTRODUÇÃO

A natureza descentralizada e colaborativa dos projetos de
software livre provocou a necessidade do uso de repositórios
e ferramentas de gestão e acompanhamento de tarefas para
facilitar o planejamento e a comunicação entre os
desenvolvedores.

A disponibilização dessas ferramentas à comunidade de
desenvolvedores e usuários agiliza o processo de detecção de
falhas e a elaboração de possíveis soluções, melhorando a
qualidade do software [5][7]. Dentre as informações
mantidas por essas ferramentas, destacamos a lista de tarefas
que discute importantes assuntos sobre o projeto, tais como o
desenvolvimento de novas funcionalidades, falhas, ajuda aos
usuários, decisões de projeto etc.

O conteúdo da lista de tarefa forma uma base de
conhecimento do projeto que pode ser utilizada para auxiliar
os próprios desenvolvedores. Entretanto, em grandes
projetos de software livre há um elevado volume de
mensagens, dificultando a escolha das tarefas em que o
desenvolvedor deseja participar. Por exemplo, no mês de
março de 2012 no projeto Apache Hadoop foram enviadas
1.622 mensagens na lista de tarefas. Assim, os
desenvolvedores estão propensos a perderem oportunidades
de participar de tarefas relevantes ao seu perfil devido ao
grande volume de dados e à dificuldade de seleção.

A dificuldade de sugerir tarefas relevantes aos
colaboradores não é um problema exclusivo da comunidade
de software livre. Problemas semelhantes são tratados pela
comunidade de sistemas colaborativos, como mostram os
trabalhos dos autores Cosley et al. [3] e Abel et al. [6].

Este trabalho mostra a importância do conteúdo dos
comentários em um projeto de software livre para construção
de um classificador para predizer a participação de um
desenvolvedor em uma determinada tarefa. O classificador é
baseado na análise de conteúdo do vocabulário utilizado pelo
desenvolvedor nas mensagens enviadas à lista de tarefas.

Para realizar a análise foram coletados dados do projeto
Apache Hadoop1 da Apache Software Foundation que está
dividido em três subprojetos: Hadoop Commons, Hadoop
Distributed File System (HDFS) e Hadoop MapReduce. Essa
análise foi realizada com objetivo de responder à seguinte
questão de pesquisa:

Q1 - É possível predizer a participação dos
desenvolvedores mais ativos na lista de tarefas (issue
tracking) com base na sua história de participação?

Para cada desenvolvedor foi construído um classificador
que prediz sua participação em uma determinada tarefa
baseado no vocabulário utilizado em outras participações.

Na composição do classificador proposto comparamos os
resultados obtidos pelo algoritmo J48 e pelo classificador
bayesiano, detalhados em [9][12]. Para cada desenvolvedor,
as tarefas foram divididas em duas classes: “Participar” ou
“Não participar”. Em seguida, para a análise do
desenvolvedor, definimos aleatoriamente um conjunto de
dados para treino e outro para teste. A proporção utilizada
para a definição do conjunto de treino e de teste foi 80-20,
respectivamente.

Na Seção 2 são apresentados os trabalhos relacionados.
Na Seção 3 é apresentado o método de pesquisa utilizado. Os
resultados são apresentados na Seção 4. Por fim, na Seção 5
são apresentadas as discussões, conclusões e trabalhos
futuros.

II. TRABALHOS RELACIONADOS

Uma desvantagem do uso de ferramentas de gestão está
diretamente relacionada à sobrecarga de trabalho atribuída
aos desenvolvedores mais experientes na triagem das

1 http://hadoop.apache.org

2012 Brazilian Symposium on Collaborative Systems

978-0-7695-4890-6/12 $26.00 © 2012 IEEE

DOI 10.1109/SBSC.2012.27

109

informações fornecidas pela comunidade [7]. Neste sentido,
o levantamento descrito nesta seção preconiza trabalhos que
abordam a redução da carga de trabalho por meio da
indicação de quais atividades o desenvolvedor deve
participar.

Matter et al. [4] apresentam uma abordagem automática
para realizar a triagem de relatórios de falhas atribuindo a
tarefa ao desenvolvedor com a melhor expertise para lidar
com a falha. Os autores construíram um modelo de expertise
para cada desenvolvedor baseado no seu código-fonte
produzido. Usando essa abordagem, reportaram um
precision de 33.6% e recall 71.0% no projeto Eclipse.
Seguindo a mesma linha, os trabalhos [11][1] constroem
modelos de expertise baseados nas alterações realizadas no
software pelo desenvolvedor.

Uma abordagem semelhante é apresenta por Cubranic e
Murphy [2], que propõem a aplicação do classificador
bayesiano para auxiliar a triagem de falhas. No processo de
classificação, os autores realizaram uma caracterização
textual considerando a descrição das falhas e obtiveram 30%
de acurácia na aplicação dessa abordagem em um grande
projeto de software livre.

Anvik et al. [8] apresentam uma abordagem que
automatiza parte do processo de triagem dos relatórios de
falhas. Baseado no conjunto de desenvolvedores
recomendado pelo algoritmo de aprendizagem de máquina
SVN, o responsável pela triagem indica um desenvolvedor
mais qualificado para resolução de falhas. A precision
alcançada com essa abordagem foi de 57% e 64% para os
projetos Eclipse e Firefox, respectivamente.

Ibrahim et al. [13] apresentam um trabalho com uma
abordagem semelhante à nossa, no entanto, aplicado para
predições em lista de e-mails. Os autores desenvolveram um
modelo que prediz a participação do desenvolvedor em uma
discussão por e-mail. Esse modelo é desenvolvido baseado
no comportamento histórico do desenvolvedor. Esse trabalho
também mostrou que a quantidade de mensagens de uma
discussão, o conteúdo, o remetente e a época em que a
mensagem é submetida influenciam o comportamento do
desenvolvedor. O classificador bayesiano e a árvore de
decisão foram usadas para aplicar a abordagem em listas de
e-mails dos projetos da Apache, PostGreSQL e Python.

As abordagens apresentadas nesta seção buscam fornecer
meios automatizados para reduzir a carga de trabalho dos
desenvolvedores em projetos de software livre e possuem
características similares às apresentadas neste trabalho. No
entanto, nossa abordagem procura recomendar tarefas ao
desenvolvedor baseadas no seu envolvimento com o projeto
em listas anteriores. O desenvolvedor pode colaborar na lista
de tarefas indicada pela abordagem de diversas formas, não
se limitando a realizar commits ou encaminhar novos
patches.

III. MÉTODO DE PESQUISA

O método é composto de três passos: coleta, preparação e
classificação dos dados.

A. Coleta de Dados
Primeiramente realizamos a coleta dos dados da lista de

tarefas no website dos projetos mencionados que estão
resumidos na Tabela 1. Utilizamos uma amostra dos dez
desenvolvedores que mais publicaram comentários em
tarefas de cada projeto. Essa amostra representa os
desenvolvedores que enviaram mais de um terço do total de
comentários de cada projeto.

TABELA 1. RESUMO DOS DADOS COLETADOS.

Subprojetos Hadoop
Commons HDFS Hadoop

MapRaduce
Tarefas (issues) 7.720 2.980 3.591

Comentários 76.065 34.051 36.987
Desenvolvedores 1.035 512 614
Inicio da coleta 01-2006 03-2006 05-2006
Fim da coleta 04-2012 04-2012 04-2012

% de comentários
dos desenvolvedores
mais ativos (TOP10)

37,3% 57,2% 39%

Para evitar ambiguidade definimos formalmente os dados
coletados. Uma lista de tarefas de um determinado projeto p
é definida pelo conjunto:

ISSUESp = {i1, i2, i3,…, in},

em que n é a quantidade de tarefas do projeto p. Podemos
ainda representar o conjunto de todos os desenvolvedores de
um determinado projeto p como:

AUTHORSp = {a1, a2, a3,…, am },

em que m é a quantidade de desenvolvedores que
comentaram em alguma tarefa ik � ISSUEp para qualquer
1 ≤ k ≤ n. Também podemos representar todos os
comentários de um projeto p como:

Cp = {c1, c2, c3,...,cq },

em que q é a quantidade de comentários publicados no
projeto p. Uma tarefa ik � ISSUEp com 1 ≤ k ≤ n é
representada pela tripla:

ik = <Cik, din, dout>,

em que Cik � Cp é o subconjunto de todos os comentários
publicados na tarefa ik e din e dout são as datas da publicação
do primeiro e último comentário, respectivamente.

Um desenvolvedor ar � AUTHORSp sendo 1 ≤ r ≤ m é
representado pela tripla:

ar = <Car, din, dout>,

em que Car � Cp é o subconjunto de todos comentários que
esse desenvolvedor publicou no projeto e din e dout são as
datas da publicação do primeiro e último comentário desse
desenvolvedor. Dessa forma, podemos notar que o conjunto
de todos os comentários do projeto p é igual à união de todos
os comentários das tarefas, ou ainda, é igual à união de todos
os comentários dos desenvolvedores, conforme:

Cp = Ci1� Ci2 � ... � Cin = Ca1 � Ca2 � ... � Cam ,

110

Um comentário c � Cp é representado pela tripla:

c = < Tc, d, a >,

em que Tc é conjunto de tokens que compõem o comentário
c, d é a data de publicação e a � AUTHORSp é o
desenvolvedor que publicou esse comentário.

Podemos representar o conjunto de todos os tokens do
projeto p como:

WORLDp = T1� T2 � ... � Tq | �c � Cp ,

Analogamente, podemos representar todos os tokens de
uma tarefa ik � ISSUEp como:

TOKENSk = T1� T2 � ... � Tw | �c � Cik ,

em que w é a quantidade de elementos do conjunto Cik.

B. Preparação dos Dados
O processo de preparação de dados consistiu em

organizar e criar o conjunto WORLDp dos subprojetos da
Apache Hadoop. O primeiro passo foi identificar e remover
da nossa amostra os comentários que foram inseridos por
sistemas de software de integração contínua, tal como o
Hudson2. Com esse simples passo foi possível remover uma
grande quantidade de comentários irrelevantes a este
trabalho como apresentado na Tabela 2.

TABELA 2. RESUMO DO PROCESSO DE PREPARAÇÃO DOS DADOS

Comentário Hadoop
Commons HDFS Hadoop

MapRaduce
% de comentários extraídos 18,8 24,6 29,9

#comentários restantes 61.769 25.688 25.932
#tokens 59.733 27.774 31.294

Em seguida, utilizamos o Apache Lucene™ 3 (AL) na
versão 3.5 para retirar as marcações HTML dos comentários,
realizar o processo de tokenização, extração dos stopwords e
lematização (stemming). Consideramos também urls e nomes
de pacotes de código-fonte como tokens únicos. A Tabela 2
mostra o tamanho do conjunto WORLDp de cada projeto.

Entendemos que o processo de preparação dos dados
ainda pode ser mais bem explorado a fim de melhorar os
resultados apresentados neste trabalho. Outro aspecto de
estudo, é o fato de existir trechos de comentários que são
compostos por código-fonte e podem ser tratados de uma
melhor maneira.

C. Classificação
Após os dados terem sido preparados, para cada

desenvolvedor do projeto, dividimos aleatoriamente o
conjunto ISSUESp em dois subconjuntos, um para treino com
80% das tarefas e outro para teste com os 20% restantes. Os
dois subconjuntos foram utilizados para classificar se o
desenvolvedor participa ou não em uma determinada tarefa
baseado em seu conteúdo. Para a predição utilizamos dois
algoritmos: o algoritmo de árvore de decisão J48 e o
algoritmo de classificação bayesiana Naïve Bayes, ambos

2 http://hudson-ci.org/
3 http://lucene.apache.org/

disponibilizados pelo WEKA4, um ambiente para análise de
conhecimento que implementa vários algoritmos de
aprendizado de máquina.

Para a execução dos algoritmos no ambiente WEKA
utilizamos um computador com processador de quatro
núcleos com 2.9 GHz, 8GB de memória RAM e um sistema
operacional de 64 bits. Devido à grande quantidade de tokens
do projeto Hadoop Commons e esse limite de memória
RAM, não foi possível executar os algoritmos com todos os
dados desse projeto. Então, para viabilizar a análise
reduzimos o conjunto WORLDcommon para 70% do original
por meio de um algoritmo que calcula a relevância de cada t
� WORLDcommon de acordo com a equação [10]:

�����(�) = ��(�,) ∗ �	�(�, �)
Vale ressaltar que essa redução foi realizada somente

para o projeto Hadoop Common. Para os demais projetos
mantivemos o conjunto WORLDp inalterado. Os resultados
são apresentados na Seção 4.

Para execução dos algoritmos os subconjuntos de dados
de treino e teste foram formatados em uma matriz de entrada
como ilustra a Figura 1.

As linhas da matriz são representadas pelos elementos do
conjunto ISSUESp e as colunas, salvo a última, são
representadas pelos elementos do conjunto WORLDp. A
matriz foi construída seguindo duas regras. A Regra 1
estabelece o preenchimento das células da matriz, menos as
da última coluna.
Regra 1: Seja uma tarefa ik � ISSUESp e um token tj �
WORLDp

���, ��� = �1 �� �� ∈ �������
0 �� �� ∉ �������

Com isso, todos os tokens pertencentes à tarefa são
assinalados com 1.

As células da coluna AA, que representa o atributo alvo a
ser predito, são preenchidas respeitando a Regra 2.
Regra 2: Seja uma tarefa ik � ISSUESp e um desenvolvedor
ar � AUTHORSp

[��, ��] �1 �� ��� ∩ ��! ≠ ∅
0 �� ��� ∩ ��! = ∅

4 http://www.cs.waikato.ac.nz/ml/weka

Figura 1. Matriz de entrada dos
dados

111

Aplicamos dois filtros adicionais nos dados de entrada. O
primeiro filtro foi aplicado tanto no subconjunto de treino
quanto no de teste, descartando as tarefas em que o
desenvolvedor não teve a oportunidade de participar. Para
isso, definimos o escopo para a tarefa como o intervalo entre
a publicação da primeira e da última mensagem publicada.
Também definimos o escopo para o desenvolvedor como o
intervalo entre a sua primeira e a última mensagem
publicada, independente da tarefa. Esse filtro respeita o que
foi estabelecido na Regra 3.
Regra 3: Dado uma tarefa ik � ISSUESp e um desenvolvedor
ar � AUTHORSp

�	���$��$�(��), �� ��[%&'] < $![�*] �+ ��[�*] > $![%&']
-$.���(��), �$�� ��.��á���

Nessa abordagem identificamos seis tipos de tarefas
como ilustra a Figura 2.

As tarefas do tipo 1 são aquelas que começam antes do
início do escopo do desenvolvedor, mas terminam dentro do
escopo. As tarefas do tipo 2 são aquelas que iniciam dentro
do escopo do desenvolvedor, mas terminam fora. As tarefas
do tipo 3 estão totalmente contidas no escopo do
desenvolvedor. As tarefas do tipo 4 permeiam por todo
escopo do desenvolvedor, mas iniciam e terminam fora. As
tarefas do tipo 5 começam e terminam antes do início do
escopo do desenvolvedor. E por último, as tarefas do tipo 6
iniciam e terminam após o término do escopo do
desenvolvedor. Com esses seis tipos de tarefas, entendemos
que o desenvolvedor teve, em algum momento, a
oportunidade de colaborar com as tarefas dos tipos 1, 2, 3 e
4. As tarefas dos tipos 5 e 6 foram descartadas por estarem
totalmente fora do escopo do desenvolvedor, não oferecendo
a oportunidade de participação. Portanto, para a predição de
cada desenvolvedor, o universo de tarefas do projeto foi
reduzido de acordo com seu escopo.

O segundo filtro, aplicado somente no subconjunto de
teste, descarta todos os tokens proferidos pelo desenvolvedor
em cada tarefa. Utilizamos essa abordagem baseado na
premissa de que os tokens proferidos pelo desenvolvedor
darão vantagem à tarefa na predição, por fazerem parte de
seu vocabulário e, provavelmente, terem sido utilizados no
treinamento. Dessa forma, esse filtro tem como objetivo
evitar um viés na predição.

IV. RESULTADOS

As Tabelas 3, 4 e 5 mostram as medidas de recall,
precision e acurácia obtidas pelo algoritmo de classificação
J48 nos subprojetos Hadoop Common, MapReduce e HDFS,
respectivamente. Os resultados alcançados pelo algoritmo
J48 foram superiores ao algoritmo Naïve Bayes atingindo
uma melhoria da taxa média da acurácia de 11,2%, 9,6% e
13,3% para os subprojetos Hadoop Common, MapReduce e
HDFS respectivamente. Por esse motivo, os resultados do
algoritmo Naïve Bayes foram omitidos.

Mesmo possuindo as informações sobre o nome e dados
de acesso dos desenvolvedores analisados, optamos por
preservar suas identidades e referenciá-los apenas por Top-1
a Top-10. Desta forma, o desenvolvedor Top-1 é aquele que
mais postou comentários na lista de tarefas do projeto.

A Tabela 3 apresenta o resultado da predição dos
desenvolvedores do subprojeto Hadoop Common e mostra
que as taxas de recall e precision para a classe “Não
participar” são mais satisfatórias que as taxas da classe
“Participar”. Esse comportamento é similar ao apresentado
nas Tabelas 4 e 5. A taxa de recall para a classe “Participar”
varia entre 0,2 e 0,54 com precision de 0,53 e 0,91. A classe
“Não participar” apresenta recall entre 0,96 e 1 com taxa de
precision variando entre 0,83 e 0,95.

TABELA 3. TAXAS DE RECALL, PRECISION E ACURÁCIA – J48 - HADOOP
COMMON.

Desenvolvedor Participar Não participar Acuráciarecall precision recall precision
Top-1 0.30 0.76 0.97 0.83 0.83
Top-2 0.37 0.73 0.98 0.90 0.88
Top-3 0.30 0.62 0.96 0.86 0.84
Top-4 0.39 0.84 0.99 0.92 0.92
Top-5 0.34 0.75 0.99 0.92 0.91
Top-6 0.30 0.61 0.98 0.92 0.91
Top-7 0.40 0.68 0.98 0.95 0.94
Top-8 0.20 0.53 0.98 0.90 0.89
Top-9 0.54 0.76 0.98 0.95 0.93
Top-10 0.39 0.91 1.00 0.95 0.95

A Tabela 4 apresenta o resultado da predição para os
desenvolvedores do subprojeto MapReduce. Destacamos o
desenvolvedor Top-9 que apresentou menor taxa de recall de
toda nossa amostra. Apesar disso, a média da taxa de recall e
precision mantiveram-se semelhantes ao subprojeto Hadoop
Commons, como indica a Tabela 6.

TABELA 4. TAXAS DE RECALL, PRECISION E ACURÁCIA – J48 -
MAPREDUCE.

Desenvolvedor Participar Não participar Acuráciarecall precision recall precision
Top-1 0.47 0.83 0.97 0.88 0.87
Top-2 0.29 0.66 0.97 0.86 0.84
Top-3 0.38 0.76 0.99 0.93 0.92
Top-4 0.34 0.76 0.98 0.91 0.91
Top-5 0.32 0.93 1.00 0.91 0.91
Top-6 0.38 0.83 0.99 0.94 0.94
Top-7 0.41 0.86 0.99 0.92 0.92
Top-8 0.36 0.71 0.98 0.93 0.92
Top-9 0.07 0.63 1.00 0.90 0.90

Top-10 0.25 0.79 1.00 0.95 0.95

Figura 2. Tipos de Tarefas.

112

A Tabela 5 apresenta o melhor resultado com as maiores
taxas de recall e de precision. Entre os desenvolvedores do
subprojeto HDFS, destacamos o Top-10 que apresentou a
maior taxa de recall na classe “Participar” da amostra.

TABELA 5. TAXAS DE RECALL, PRECISION E ACURÁCIA – J48 - HDFS.

Desenvolvedor Participar Não participar Acuráciarecall precision recall precision
Top-1 0.46 0.78 0.94 0.79 0.79
Top-2 0.33 0.77 0.97 0.81 0.80
Top-3 0.45 0.77 0.97 0.88 0.87
Top-4 0.41 0.73 0.95 0.84 0.83
Top-5 0.31 0.63 0.97 0.90 0.88
Top-6 0.31 0.73 0.99 0.93 0.93
Top-7 0.35 0.87 0.99 0.85 0.85
Top-8 0.43 0.63 0.97 0.93 0.91
Top-9 0.56 0.71 0.99 0.97 0.96

Top-10 0.62 0.97 1.00 0.95 0.95

A Tabela 6 apresenta um resumo com as médias das
taxas de recall, precision e acurácia. As médias das acurácias
por projeto foram 0,90, 0,91 e 0,87. No entanto, como visto
nas tabelas anteriores, as medidas de acurácia variaram entre
0,79 e 0,96, considerando todos os subprojetos.

TABELA 6. TAXAS MÉDIAS DE RECALL, PRECISION E ACURÁCIA - J48.

Projetos Participar Não participar Acuráciarecall precision recall precision
Commons 0.34 0.71 0.98 0.91 0.90

MapReduce 0.33 0.78 0.99 0.91 0.91
HDFS 0.41 0.76 0.97 0.89 0.87

A Figura 3 apresenta três gráficos que mostram uma
comparação entre os resultados das acurácias alcançadas
com os subprojetos em estudo para o Naïve Bayes e o J48.
Nota-se que o algoritmo J48 é melhor que o algoritmo Naïve
Bayes para todos os casos.

A Figura 4 apresenta o gráfico que mostra a relação entre
a acurácia obtida pelo algoritmo J48 e os desenvolvedores
que estão ordenados de acordo com a taxa de participação.

Figura 4. Relação da acurácia dos dez desenvolvedores entre os três
projetos.

V. DISCUSSÃO E CONCLUSÃO

Em nossa análise utilizamos os comentários publicados
nas discussões das listas de tarefas em três subprojetos de um
software livre. A amostra foi limitada aos dez
desenvolvedores que mais publicaram comentários. Não
podemos afirmar que os mesmos resultados serão obtidos
para os desenvolvedores com menos participações, pois o
vocabulário desses desenvolvedores seria menor. Um
possível trabalho futuro é aplicar o algoritmo para uma
amostra maior de desenvolvedores para verificar a
generalização da abordagem. Os resultados obtidos pelo
classificador elaborado usando os métodos descritos na
Seção 2 visam responder à seguinte questão de pesquisa:

Q1 - É possível predizer a participação dos
desenvolvedores mais ativos na lista de tarefas (issue
tracking) com base na sua história de participação?

As Tabelas 3, 4, 5 e 6 mostraram o resultado da predição
com uma alta acurácia, variando de 0,79 a 0,96. No entanto,
esse classificador apresenta uma baixa taxa de recall para a
classe “Participar”. Entendemos que isso é uma deficiência
do nosso classificador, visto que ao não atribuir ao
desenvolvedor uma tarefa em que poderia participar,
deixamos de aproveitar o seu potencial e conhecimento.
Entretanto, os resultados mostram que, dentre as tarefas
indicadas ao desenvolvedor, a taxa de precision apresentou
uma média de 0,75 variando entre 0,53 e 0,97. Suspeitamos
que melhores resultados para caracterizar um desenvolvedor
possam ser obtidos quando outros fatores, tais como os
apresentados em [5], são combinados à nossa abordagem.

A alta acurácia do nosso classificador deve-se aos
resultados obtidos com a classe “Não participar”. Essa
participação é significativa, visto que nosso classificador foi
satisfatório ao identificar tarefas que não são de interesse ou
do conhecimento do desenvolvedor. Comportamento
semelhante das classes “Participar” e “Não participar” pode
ser visto em Ibrahim et al. [13] que apresentaram resultados
de um classificador bayesiano para predizer a participação de
um desenvolvedor em lista de e-mails.

Ao comparar nossa abordagem com outros trabalhos
relacionados, vimos que apresentamos melhores resultados
do que aqueles obtidos por Cubranic e Murphy [2]. No
entanto, esse trabalho procura identificar qual desenvolvedor
é o mais adequado para resolver uma falha específica no
projeto. Como nosso objetivo é predizer a participação de

0,7

0,75

0,8

0,85

0,9

0,95

1

1 2 3 4 5 6 7 8 9 10

Ac
ur

ác
ia

Desenvolvedores

HDFS MapReduce Common

Figura 3. Naïve Bayes versus J48.

113

um desenvolvedor em uma determinada tarefa, não é
possível comparar os resultados de maneira tão simplificada.

Neste trabalho ainda exploramos o desempenho do
classificador construído pelo algoritmo Naïve Bayes. No
entanto, como demostrado pela Figura 3, o algoritmo J48
apresentou melhores valores de acurácia sobre o algoritmo
Naïve Bayes para os dez desenvolvedores em todos os
subprojetos. A maior diferença (14,5%) foi apresentada pelo
desenvolvedor Top-3 do projeto HDFS e a menor diferença
(4,7%) pelo desenvolvedor Top-10 do subprojeto
MapReduce. Ao aplicarmos o algoritmo J48, obtivemos um
aumento da acurácia de 11,2%, 9,6% e 13,3% em média para
o Hadoop Common, MapReduce e HDFS, respectivamente.

A Figura 4 apresenta um gráfico que faz uma relação
entre a participação dos desenvolvedores e a taxa da acurácia
do classificador construído pelo algoritmo J48. Podemos
notar que o comportamento entre a taxa de acurácia dos dez
desenvolvedores mais ativos é semelhante nos três projetos.
Um resultado não esperado pode ser visto no crescimento
dos valores de acurácia. Esse crescimento indica que entre os
desenvolvedores mais ativos da amostra existe uma
tendência de quanto menor é a participação melhor é a
acurácia na classificação de sua participação ou não em
tarefas. Vale ressaltar que mesmo o último entre os dez
desenvolvedores, apresenta uma taxa de participação é muito
significativa no projeto. Esse comportamento de crescimento
foi encontrado nos três subprojetos analisados, no entanto, é
necessário mais estudos para investigar se também ocorre
para outros conjuntos de desenvolvedores.

Algumas limitações e ameaças à validade dos resultados
são: (i) Os resultados da análise são específicos para os
projetos analisados, não podendo ser generalizados. Os
projetos podem possuir diferentes características decorrentes
da estrutura organizacional ou do domínio da aplicação. A
análise com uma maior quantidade de projetos, ou com o
ecossistema do Apache Software Foundation tornaria os
resultados mais genéricos. (ii) A análise foi realizada
baseada em dados coletados desde a criação do projeto e no
início não havia uma separação formal dos subprojetos.
Assim, suspeitamos que algumas das tarefas que eram
destinadas ao HDFS ou ao MapReduce possam ter sido
publicadas na lista do Hadoop Common. (iii) Devido a uma
restrição imposta pela limitação física do equipamento
utilizado para executar os algoritmos, tivemos que reduzir
em 30% o conjunto WORLDcommon. (iv) O classificador tem
como base a análise do vocabulário do desenvolvedor
utilizado em comentários anteriores, e pode não proporcionar
os mesmos resultados para novos desenvolvedores. (v) A
abordagem para a extração dos tokens que compõem o
conjunto WORLDp pode ser melhor explorada,
principalmente com relação aos códigos-fonte publicados
nas tarefas. (vi) Não é possível também afirmar que a
abordagem tem os mesmos resultados para os
desenvolvedores com menor quantidade de comentários
enviados. Como dito anteriormente, uma análise com uma
amostra maior e com desenvolvedores escolhidos
aleatoriamente deve ser conduzida futuramente para verificar
a efetividade da abordagem em outros casos.

Em resumo apresentamos resultados que indicam que o
conteúdo dos comentários publicados em tarefas (issues) de
projetos de software livre é um importante fator para
construir um classificador de predição de tarefas aos
desenvolvedores. Baseado neste fator, mostramos que é
possível construir um classificador com alta acurácia que
pode diminuir a carga de trabalho do desenvolvedor
indicando a sua participação em tarefas de seu interesse.
Entretanto, reconhecemos que a taxa de recall obtida para a
classe “Participar” não foi satisfatória. Por último,
mostramos que nossa abordagem é mais efetiva se
utilizarmos o algoritmo de classificação J48 em comparação
ao Naïve Bayes.

A respeito dos trabalhos futuros, além daqueles já citados
na análise das ameaças à validade, entendemos que outros
fatores que auxiliem a caracterização dos desenvolvedores
devem ser explorados e combinados para melhorar o
desempenho da predição. Pretende-se ainda comparar a
nossa abordagem com outras apresentadas na literatura.

REFERÊNCIAS

[1] A. Mockus and J. D. Herbsleb, "Expertise browser: a quantitative
approach to identifying expertise," Proc. of the 24th International
Conference on Software Engineering, pp.503-512, May 2002.

[2] D. Cubranic and G. C. Murphy, "Automatic bug triage using text
classification," Proc. of Software Engineering and Knowledge
Engineering, pp.92-97, 2004

[3] D. Cosley, D. Frankowski, L. Terveen, and J. Riedl, "SuggestBot:
using intelligent task routing to help people find work in wikipedia,"
Proc. of the 12th international conference on intelligent user
interfaces. New York, NY, USA, pp.32-41, 2007.

[4] D. Matter, A. Kuhn, and O. Nierstrasz, "Assigning bug reports using
a vocabulary-based expertise model of developers," Proc. of 6th IEEE
International Working Conference on Mining Software Repositories.
Washington, DC, USA, pp.131-140, May 2009.

[5] E. S. Raymond, "The cathedral and the bazaar," Tim O'Reilly (Ed.).
O'Reilly & Associates, Inc., Sebastopol, CA, USA, 1999.

[6] F. Abel, I. I. Bittencourt, E. Costa, N. Henze, D. Krause, and J.
Vassileva, "Recommendations in online discussion forums for e-
learning systems," IEEE Transactions on Learning Technologies,
vol.3, no.2, pp.165-176, April-June 2010.

[7] J. Anvik, L. Hiew, and G. C. Murphy, "Coping with an open bug
repository," Proc. of the OOPSLA workshop on Eclipse technology
eXchange. ACM, New York, NY, USA, 35-39. 2005.

[8] J. Anvik, L. Hiew, and G. C. Murphy, "Who should fix this bug?,"
Proc. of the 28th international conference on software engineering,
New York, NY, USA, pp.361-370, 2006.

[9] R. Quinlan, "C4.5: Programs for Machine Learning," Morgan
Kaufmann Publishers, San Mateo, CA, USA, 1993.

[10] Spärck Jones, Karen. 1972. A statistical interpretation of term
specificity and its application in retrieval. Journal of Documentation
28 (1): 11–21. doi:10.1108/eb026526.

[11] T. Fritz, G. C. Murphy, and E. Hill, "Does a programmer’s activity
indicate knowledge of code?," Proc. of the 6th european software
engineering conference, pp.341-350, New York, NY, USA, 2007.

[12] T. M. Mitchell, "Machine Learning," McGraw-Hill, New York, NY,
USA, 1997.

[13] W. M. Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and A. E.
Hassan, "Should I contribute to this discussion?," Proc of 7th IEEE
working conference mining software repositories, pp.181-190, May
2010.

114

