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Abstract — This paper presents the Virtual Caregiver system, a
collaborative  ubiquitous computing application. The
application scenario is the monitoring of an 86 years old
patient diagnosed with Alzheimer's disease and -cardiac
arrhythmia. The system consolidates data obtained from
sensors in a wearable device to enable collaborative monitoring
of elderly patients by relatives and health professionals using
smartphones and social networks. From the classifier
developed for this study, it was found 99.4% overall accuracy
in a 10-fold cross validation test. We also obtained feedback
from patients and relatives that have been useful to guide the
development of a new version of the wearable, unobtrusive and
adapted to the patient needs.

Wearable Computing, Human Activity Recognition, e-Health

L. INTRODUCAO

Com o aumento da expectativa de vida e o
envelhecimento da populagdo, tem se tornado um desafio o
desenvolvimento de tecnologias que possibilitem uma vida
mais independente e segura para idosos e doentes cronicos
[17[2][3]. Em pesquisas recentes busca-se investigar
tecnologias para apoiar o acompanhamento de idosos e
doentes cronicos em suas casas, de modo a evitar o impacto
social, os riscos e os custos de uma internagdo [3]. Sistemas
de e-health sdo alternativas tecnologicas frequentemente
propostas nessas pesquisas pois possibilitam a colaboragio
dos parentes e profissionais no acompanhamento de idosos e
doentes cronicos fora do ambiente hospitalar.

Sistemas e-health possibilitam o registro de dados para
posterior avaliagdo médica, como a rotina de atividades e a
frequéncia de batimentos cardiacos. Esse registro ¢ um dado
valioso para o médico que faz um tratamento continuado do
paciente. Sistemas de e-health também sdo potencialmente
uteis para possibilitar a identificagdo de situagdes na rotina
que desencadeiam crises ou riscos para o paciente
monitorado.

Wearable computers sdo usados em alguns sistemas de e-
health para o monitoramento dos sinais vitais, temperatura
corporal, frequéncia cardiaca, nivel glicémico, atividades
fisicas, entre outras medidas importantes para o
acompanhamento de um paciente [4][5]. Os dados obtidos a
partir de wearables possibilitam também a emissdo de alertas
em casos de emergéncia, como quedas ou a mudanca da
frequéncia cardiaca para valores de atengdo estipulados pelo
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médico [6]. Uma abordagem alternativa ao uso de wearables
¢ sensoriar o ambiente. Na Seco 2 sdo discutidos os pontos
fortes e fracos das duas abordagens de sensoriamento
possuem, bem como sdo listadas pesquisas realizadas com
cada abordagem.

Um desafio para o desenvolvimento de wearables de
suporte a e-health ¢ a interpretacdo dos dados primarios
obtidos dos sensores. Essa interpretacdo pode ser feita por
meio de regras definidas numa especificagdo formal ou por
meio de técnicas de aprendizado de maquina e mineragio de
dados. O objetivo ¢ desenvolver classificadores para
alimentar sistemas de e-health com informacdes tratadas,
obtidas a partir de dados primarios dos sensores. Uma
revisdo da literatura sobre classificadores para atividades
humanas a partir de dados de acelerometros ¢ apresentada na
Secgdo 3. Com as orientagdes obtidas na revisdo de literatura
foi construido um wearable e desenvolvido um classificador
para os dados obtidos dos sensores no Wearable. O wearable
e o classificador também sdo apresentados na Segéo 3.

O contexto para o desenvolvimento dessa pesquisa ¢ o
projeto de pesquisa Ubilife (FAPERJ), no qual sdo
investigadas tecnologias para auxiliar parentes, amigos ou
profissionais da area médica responsaveis pela assisténcia a
idosos fora do ambiente hospitalar. O sistema Virtual
Caregiver foi desenvolvido para apoiar o acompanhamento
de uma paciente de 86 anos, diagnosticada com Alzheimer e
arritmia cardiaca. O sistema tem 3 moédulos: aplicativo web
para a rede social Facebook, aplicativo para smartphone com
sistema operacional Android e wearable, usado para coleta
de dados do paciente. O sistema é contextualizado no projeto
de pesquisa e apresentado na Seg¢do 4. Conclusio e trabalhos
futuros dessa pesquisa sdo discutidos na Secdo 5.

1L

O reconhecimento de atividades tem sido usado em
diversas aplicagdes como esportiva, entretenimento e satde.
A coleta dos dados necessarios para o reconhecimento ¢ feita
por meio de duas abordagens principais: o sensoriamento do
ambiente e o sensoriamento do corpo humano. Cada
abordagem tem pontos fortes e fracos e a decisdo sobre o uso
de uma das abordagens estd relacionada com a aplicagdo
pretendida do reconhecimento de atividades. Para esportes e
atividades realizadas em ambiente controlado as duas
abordagens sdo viaveis. Para ambientes ndo controlados,
como o trafego de pedestres em via publica, a abordagem de
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sensoriamento do corpo apresenta consideraveis vantagens
em relagdo ao sensoriamento do ambiente.

A. Sensoriamento do ambiente

Quando se usa o monitoramento do ambiente € preciso
equipar o local com uma infra-estrutura que possibilite a
coleta de dados. O monitoramento dos individuos ¢
geralmente realizado por meio de técnicas de visdo
computacional, embora também seja realizado por meio da
outras abordagens, como triangulacdo e trilateracdo em
sistemas emissores / receptores.

Para o monitoramento de atletas em atividades
esportivas, uma abordagem comum aplicada por treinadores
¢ filmar os movimentos do atleta com uma camera 2D e usar
um sistema de digitalizagdo do video para realizar a anota¢do
offline quadro a quadro das atividades. Essa abordagem de
registro e anotagdo de videos possibilita a geracdo de
datasets para métodos de aprendizagem supervisionada por
meio de processamento de imagens.

Uma alternativa ¢ equipar o ambiente com sistemas de
rastreamento de individuos baseados em marcadores, com o0s
quais sdo obtidos dados sobre diferentes partes do esqueleto
(por exemplo, posi¢do das articulagdes em 3 eixos — X, y € z).
O sensor Microsoft Kinect tem sido usado recentemente para
rastreamento tridimensional de 26 articulagdes do corpo
humano [7]. No trabalho de Beetz, Kirchlechner e Lames
[8] um sistema baseado em threshold é usado para analisar
partidas de futebol com rastreamento dos jogadores por meio
de um receptor que triangula informagdes de emissores de
micro ondas posicionados nas caneleiras e na bola. Sobre o
uso conjugado de cameras e marcadores, ha o trabalho de
Hey e Carter [9] no qual uma mesa de ténis ¢ usada para
registrar os pontos de impacto e a bola ¢ rastreada por meio
de camera de video e sensores de vibragéo.

A principal vantagem de usar sensores no ambiente ¢ nao
fixar qualquer equipamento no corpo do individuo. Em
alguns casos pode ser necessario marcar o individuo
visualmente, mas esses marcadores visuais s3o quase
imperceptiveis (geralmente uma cor diferente na roupa)
como no caso de [8]. Uma desvantagem no sensoriamento do
ambiente ¢ a necessidade de uma area coberta pelo sistema
de rastreamento, o que torna essa abordagem dificil de ser
aplicada em ambientes externos como avenidas, sendo mais
indicada para ambientes internos e controlados, como sala de
hospital, quadra de ténis e campo de futebol.

B. Sensoriamento do corpo

Na abordagem de sensoriamento do corpo, as unidades
de medigdo de forga inercial (IMU — Inertial Measurement
Units) sdo os sensores mais usados. As IMUs sdo geralmente
equipadas com 6 ou 9 graus de liberdade, o que significa 6
ou 9 medidas (acelerémetro, giroscopio e magnetdmetro
triaxiais) coletadas simultaneamente, mas ¢ também muito
comum o uso de acelerometros triaxiais isoladamente.

Atualmente ¢ possivel encontrar a venda pulseiras e
relogios com funcionalidades para sensoriamento, mas os
sensores sdo geralmente restritos a monitores de frequéncia
cardiaca e pedometros. Uma abordagem recente na industria
sdo pulseiras que inferem o nivel de atividade do individuo
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por meio das leituras de um acelerometro. Os dados obtidos
dos sensores sdo geralmente classificados como “‘em
atividade” ou “em repouso” e as inferéncias sdo feitas por
regras préestabelecidas (threshold-based decision). O
objetivo, em geral, é motivar o individuo a pratica de
atividades fisicas. Um produto disponivel na industria é o
Nike +iPod no qual sdo combinados dados de sensores com
as musicas tocadas no iPod do individuo. Como resultado de
pesquisas, 0 MPTrain é um sistema que compila uma lista de
musicas por meio do mapeamento de caracteristicas das
musicas, nivel de atividade e resposta fisioldgica do atleta
[10]. Outro exemplo é o MOPET, um sistema que usa GPS
(Global Positioning System), acelerdmetros ¢ medidores de
frequéncia cardiaca para prover motivagdo e avisos para o
individuo por meio de um agente 3D em um dispositivo
moével [11].

Na area de saiude, o reconhecimento de atividades com
wearables tem sido aplicado para acompanhar o consumo de
energia na realizagdo de atividades fisicas, como ¢ o exemplo
do wearable “SensVest” de Knight et al. [12]. Outro trabalho
na area de satde é o de Jovanov et al., [13], no qual uma rede
ZigBee de sensores sem fio ¢ implementada para possibilitar
analise em tempo real dos dados dos sensores e prover
feedback para o usuario. O sistema dispara alertas conforme
o nivel de atividade, estado geral do usuério e condigdes
ambientais. Todas as informagdes geradas pelo sistema sdo
armazenadas em servidores junto com o registro do paciente.

Na 4area de atividades esportivas, um exemplo ¢ o
dispositivo wearable para esqui, desenvolvido por
Michahelles and B. Schiele [14], no qual sio usados
resistores de for¢a, um acelerdmetro e um giroscopio para
medir respectivamente a pressdo nos pés, movimento e
rotacdo do esquiador. Por fim, no dominio de levantamento
de peso, Chang et al. [15] propdem o uso de sensores na
luva e na cintura do individuo para identificar e contar os
exercicios realizados.

A principal vantagem da abordagem wearable é ndo
pressupor a existéncia de infraestrutura no ambiente, o que
possibilita ao individuo realizar suas atividades em qualquer
ambiente. Com relagdo aos dispositivos computacionais
tradicionais (computadores, tablets e smartphones), a
vantagem do wearable é ndo exigir a aten¢do do usudrio,
uma vez que o uso do computador ndo ¢ necessariamente a
atividade primaria de um individuo. As principais
desvantagens sdo a necessidade de vestir equipamentos, o
que exige um bom projeto do wearable, a possibilidade de
descalibragem dos sensores, o que demanda a atuagdo do
usuario para reconhecer a descalibragem e disparar uma
recalibragem, e consumo de bateria — que ainda € objeto de
estudos de otimizagao.

III.

Nessa sec¢do sdo apresentados resultados parciais de uma
revisdo sistematica da literatura sobre o reconhecimento de
atividades, que foram usados para apoiar a construgdo do
dispositivo wearable e o desenvolvimento do classificador,
também apresentados nessa secdo. Outros dados dessa
revisdo sdo apresentados em [16].

CLASSIFICADORES PARA DADOS DE ACELEROMETROS



Nessa revisdo, foram coletados os seguintes metadados
para possibilitar andlises quantitativa e qualitativa dos
trabalhos: titulo da pesquisa, ano, quantidade de
acelerometros, uso de outros sensores, posicdo dos
acelerometros, lista de atividades para classificag¢o, técnica
de aprendizado de maquina usada (ou classifica¢do baseada
em threshold), nimero de individuos (sujeitos) e tamanho do
dataset, modo de teste (conjunto de treino vs. conjunto de
teste ou validagdo cruzada nos modos k-fold, leave-one-
example-out ou leave-one-subject-out), e percentual de
acerto na classificacdo. Em relagdo ao ano de publicacdo,
conforme ilustrado na Figura 1, foi observado um crescente
nimero de publicagbes de HAR (Human Activity
Recognition) com acelerometros, o que da indicios da
relevancia da abordagem de wearables para a area de HAR.
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Figura 1. Numero de publicagdes na area de reconhecimento de

atividades com acelerometros (base IEEE)

Na maior parte dos trabalhos revisados observou-se o uso
de até 4 acelerometros para a coleta de dados. Os autores
recomendam o posicionamento dos sensores na cintura ou
peito se for construido um dispositivo vestivel com apenas 1
sensor [17]. Para abordagens com mais de 1 sensor as
posi¢des recomendadas s3o cintura ou peito, coxa e
tornozelo [18][19][20][21][22]. Num survey da literatura
especifico sobre o reconhecimento de atividades com
acelerometros [23], Yang e Csu apontam essas mesmas areas
do corpo como as mais importantes para o reconhecimento
de posturas como ‘“sentado” e em “pé”, movimentos como
“andar” e “subir escadas” e transi¢des como “levantar” e
“sentar”. Esses resultados da literatura foram considerados
na constru¢do do wearable para essa pesquisa.

Sobre os classificadores desenvolvidos, o0 modo de teste
mais usado ¢ a validagdo cruzada (k-fold); entretanto, testes
menos confiaveis e testes ndo padronizados também sdo
usados. Outro importante dado identificado na revisdo da
literatura ¢ que boa parte dos trabalhos apresentam taxa de
acerto maior ou igual a 90% na classificacdo das atividades.
A pesquisa com maior percentual de acerto ¢ a de Jun-Ki e
Sung-Bae [24], com 99.4% de desempenho geral. Entretanto,
é impossivel comparar o desempenho desses classificadores
em funcdo da auséncia de datasets publicos. Também ¢&
impossivel replicar os wearables da maior parte das
pesquisas encontradas nessa revisdo por causa da auséncia de
informagdo sobre o posicionamento, modelo e orientagdo dos
sensores.
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O crescente ntimero de publicagdes da indicios da
relevancia da area de pesquisa, enquanto a impossibilidade
de replicar os classificadores e dispositivos e a aplicagdo de
testes pouco confidveis indicam a necessidade de
amadurecimento dessa area de pesquisa. Como resposta a
essa demanda de amadurecimento, nesta pesquisa s3o
disponibilizados os datasets e todas as informacdes
necessarias para a replicagdo do dispositivo wearable
construido para a coleta de dados, conforme disponivel no
website do projeto de pesquisa.

A. Construgdo do dispositivo wearable

No dispositivo wearable foram usados 4 acelerometros
triaxiais, modelo ADXL335, conectados a um
microcontrolador ATmega328V. Todos os modulos sdo da
familia “Lilypad Arduino”, apropriados para costura em
tecido. Na Figura 2 s@o ilustrados o Wearable, o
posicionamento e a orientacdo dos sensores.

Esquema de posicionamento
e orientacdo dos sensores

Dispositivo em uso por um dos
participantes

. Orientagdo dos
acelerdmetros

Figura 2. Wearable construido para a coleta de dados

Os acelerdmetros foram posicionados, respectivamente,
na cintura (1), coxa esquerda (2), tornozelo direito (3), e
braco direito (4) e calibrados antes da coleta de dados. Foi
usado um modo simples de calibragem que consiste em
manter os acelerdmetros imoveis em uma superficie plana,
efetuar leituras durante um tempo e considerar o valor médio
como ponto zero. O valor médio de cada eixo ¢ descontado
das leituras durante a coleta de dados.

B. Coleta de dados

Foram coletados dados durante 8 horas de atividades,
sendo aproximadamente 2 horas com cada um dos 4
participantes: 2 homens e 2 mulheres, todos adultos,
saudaveis e sem restricdes de movimentos. O protocolo
estipulado para cada participante foi executar cada atividade
separadamente (ambiente laboratorial). O participante mais
velho realizou as atividades por menos tempo em funcdo de
um desconforto muscular relatado. O perfil de cada
participante ¢ listado na Tabela 1.

TABELA I PERFIL DOS PARTICIPANTES
Participante  Sexo Idade Altura  Peso Instancias
A Feminino 46 anos  1.62m 67kg 51,577
B Feminino 28 anos  1.58m 53kg 49,797
C Masculino 31anos 1.71m 83kg 51,098
D Masculino  75anos  1.67m 67kg 13,161




No total foram coletadas 165.633 instdncias. A
distribuicdo das instancias entre as atividades ¢ ilustrada na
Figura 3.
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Figura 3. Frequencia das instancias

Apds a coleta dos dados, os arquivos foram concatenados
e pré-processados para diferentes formatos, conforme a
orientagdo de [24]. O objetivo ¢ possibilitar a investigagdo de
varios modelos, como SVM, redes neurais, arvores de
decisdo. Para alguns modelos foi preciso normalizar os dados
e converter features nominais para numéricas.

C. Extragdo de features

Os dados foram lidos a uma frequéncia de 10Hz (aprox.
10 leituras por segundo). Para cada um dos 4 acelerdmetros
as medidas de acelerag@o nos eixos X, y e z foram as features
primarias estabelecidas. A partir desses valores, foram
calculadas features derivadas, como a rotagdo sobre os eixos
(roll e pitch) e o mdédulo do vetor de aceleragio.

Sobre a lista de features primarias e derivadas foi gerada
uma janela de tempo de 1s a partir da qual varias features
foram calculadas, todas resultantes de medidas de estatistica
descritiva sobre os dados da janela de tempo. Cada janela ¢
sobreposta com um deslocamento de 150ms em relagdo a
anterior. As features geradas sdo listadas a seguir:

e Para cada acelerdmetro: as leituras da aceleracdo nos
eixos X, y, € z; a rotacdo sobre os angulos x e y € o
modulo do vetor de aceleragio;

e Variancia de roll, pitch e do modulo do vetor para todas
as instancias da janela de tempo de 1s;

e Uma coluna com a discretizacdo do modulo do vetor de
aceleragdo de cada sensor. As faixas para a discretizagdo
foram definidas apds analise estatistica comparando os
dados das 5 classes;

D. Selegdo de features

Para diminuir o uso de features redundantes e selecionar
as features mais informativas em relacdo as classes, foi usado
o algoritmo de selecdo de Mark Hall [26], baseado em
correlagdo. O algoritmo foi configurado para adotar o
método BestFirst, que tem uma estratégia gulosa baseada em
backtracking. O resultado da selecdo é o menor conjunto de
features que traz o maior ganho de informacao.

As 12 features selecionadas por meio desse procedimento
foram: (1) sensor da cintura: discretiza¢do do modulo do
vetor de aceleracdo, variancia do pitch e variancia do roll; (2)
Sensor posicionado na coxa direita: modulo do vetor de
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aceleracdo, discretizagdo e a varidncia do pitch; (3) Sensor
no tornozelo direito: varidncia do pitch e variancia do roll;
(4) Sensor no brago direito: discretizacdo do moédulo de
acelera¢do. De todos os sensores: a média aritmética do
modulo do vetor entre as leituras da janela de tempo.

E. Classificador para atividades humanas

Com o dataset gerado foram realizados diversos testes de
validag@o cruzada (67 no total) envolvendo os algoritmos de
aprendizagem supervisionada:  Support Vector Machine
(SVM), Voted Perceptron (estratégia one-against-all),
MultiLayer Perceptron (Back Propagation) e Arvore de
Decisdo C4.5. O melhor resultado obtido foi de 98.1% de
acerto com a arvore de decisdo C4.5, de Ross Quilan [27],
configurada com fator de confidéncia de 0.15 ¢ minimo de
100 instancias por folha. A arvore C4.5 ¢ uma evolugdo
proposta por Quilan ao algoritmo ID3  (Iterative
Dichotomiser 3) e sua principal vantagem sobre o ID3 ¢ a
poda mais eficiente.

Para obter maior percentual de acerto foi criado um
comité AdaBoost [28] com 10 arvores C4.5. Segundo o
autor, o método AdaBoost “gera distribuicdes concentradas
nos exemplos mais dificeis para possibilitar a um algoritmo

fraco obter melhor desempenho nas partes mais dificeis do

espaco amostral” (traducdo nossa). De maneira simplificada,
com o uso de AdaBoost, o algoritmo C4.5 foi executado com
diferentes distribuigdes a cada iteragdo, privilegiando as
instancias mais dificeis de predizer.

O desempenho geral obtido com o comité AdaBoost foi
de 99.4% de acerto (media ponderada) no modo de teste de
validagdo cruzada (10-fold). A precisdo obtida por classe foi:
“sitting” 100%, “sitting down” 96.9%, “standing” 99.8%,
“standing up” 96.9%, e “walking” 99.8%.

IV.  VIRTUAL CAREGIVER: COLABORACAO PARA
ASSISTENCIA FORA DO HOSPITAL

O sistema Virtual Caregiver foi proposto no contexto do
projeto de pesquisa Ubilife. No Ubilife sfo investigadas
tecnologias para auxiliar parentes, amigos ou profissionais da
area médica responsaveis pela assisténcia a idosos fora do
ambiente hospitalar. Um dos sistemas no contexto do Ubilife é
um AAL (Ambient Assisted Living) colaborativo que usa o
mundo virtual OpenSIM como plataforma para apoiar para o
monitoramento constante de um idoso, além de dispor de
servicos de lembretes e alarmes [29]. Nesse AAL, coletam-se
dados por meio do sensoriamento do ambiente para
correlacionar os objetos e o individuo, e obter dados como a
localizag@o do usudrio e os objetos com os quais interage.

O Virtual Caregiver foi implementado para possibilitar o uso
de dispositivos moveis, como smartphones e tablets, e também a
rede social Facebook, dada a sua popularidade recente. O
trabalho de [30] ¢ o principal trabalho relacionado. O cenario de
aplicagdo ¢ com a familia de uma paciente de 86 anos,
diagnosticada com Alzheimer e arritmia cardiaca. Um dos
parentes comentou seu interesse na tecnologia de
monitoramento: “(...) me interessei pois a minha avé é uma
senhora idosa de 86 anos com Alzheimer e cardiaca [sic] e
uma vez ela se perdeu em Botafogo, sem ter como se comunicar,
sem lembrar onde estava e quem eram seus parentes.”



Os agentes originalmente implementados na arquitetura
multiagentes xAgente [29] ndo contemplam o monitoramento
em ambientes externos e a interface foi desenvolvida apenas
para o espelhamento do ambiente em mundos virtuais. A
plataforma, contudo, possibilita extensdes, que foram
desenvolvidas para viabilizar o compartilhamento dos dados do
sistema em redes sociais e smartphones. A tela do aplicativo
para Facebook ¢ ilustrada na Figura 4.

Na Figura 4, o aplicativo para Facebook contém um
histérico dos batimentos cardiacos recentes da paciente. O
histérico é associado a atividade ou postura do paciente. Dados
da localizagdo (GPS) também sdo apresentados graficamente. A
interface do Facebook foi imitada para possibilitar a inclusdo de
comentarios, fotos e arquivos relacionados a rotina do paciente.

facebook

— Pigina lmical =

[P dmoste &I
T \firtual Caregiver ~

Virtual Caregiver

Frequéncia Atividade
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. e Sentado
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™
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% ]
B2 escrever publicacio 1§ Fotofvideo & Perguntar Carregar arquive

Figura 4. Aplicativo para Facebook

A interface para Android, ilustrada na Figura 5, contém os
mesmos elementos da interface para Facebook e possui também
atalhos para fazer ligacdes de emergéncia e enviar SMS para um
dos colaboradores.
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Figura 5. Aplicativo para Android

Para coletar os dados de batimentos cardiacos foi usado um
sensor de batimentos conhecido como Polar. O Wearable com as
IMUs (Inertial Measurement Unit) foi adaptado para as medidas
fisicas da paciente, para coletar os dados de batimentos cardiacos
e para enviar os dados por Bluetooth para um smartphone. A
paciente usa o wearable por baixo da blusa e os parentes ja
solicitaram uma adaptagdo do prototipo wearable para viabilizar
0 uso prolon; Ell‘dO. O wearable construido ¢ ilustrado na Figura 6.

FRONT

Figura 6. Wearable usado para monitoramento

No projeto Virtual Caregiver, a colaboragdo ¢ entendida pelo
Modelo 3C de colaboragdo [31]: as notificagdes de atividades e
batimentos cardiacos da paciente e o grupo no Facebook
compreendem o espago compartilhado no qual parentes e
médicos cooperam. Com a observagdo de médicos e parentes
espera-se que padrdes de comportamento e sintomas sejam
percebidos ¢ o médico possa atuar de forma preventiva. A
vantagem de usar a colaborag¢do, em detrimento do uso de uma
analise estatistica em um grande banco de dados, é a
possibilidade de observar padroes com dados de apenas uma
paciente.

V.

Nesse artigo foram discutidas abordagens para o
reconhecimento de atividades humanas e foi feita uma revisdo dos
principais trabalhos na area. Foi realizada uma revisdo da literatura
sobre classificadores de dados de acelerometros para o

CONCLUSAO E TRABALHOS FUTUROS



reconhecimento de atividades e foram desenvolvidos um
classificador para reconhecimento de atividades, um wearable
usado na coleta de dados, e o sistema Virtual Caregiver.

O bom resultado obtido no desenvolvimento do classificador
motivou a continuidade da pesquisa e o desenvolvimento da nova
versdo do wearable, que foi adaptado as necessidades da paciente.
A nova versdo do wearable ¢ mais discreta e possibilita também
coletar a frequéncia de batimentos cardiacos, ndo previsto na
primeira versdo. Como trabalhos futuros, sera feita a liberagao dos
aplicativos do Facebook ¢ Android para uso pelos parentes. Espera-
se avaliar a usabilidade dos mecanismos de interface e se a
colaboragdo dos parentes e médicos ¢ 1itil para 0 acompanhamento
da paciente.
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