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Abstract — This paper presents the Virtual Caregiver system, a 
collaborative ubiquitous computing application. The 
application scenario is the monitoring of an 86 years old 
patient diagnosed with Alzheimer's disease and cardiac 
arrhythmia. The system consolidates data obtained from 
sensors in a wearable device to enable collaborative monitoring 
of elderly patients by relatives and health professionals using 
smartphones and social networks. From the classifier 
developed for this study, it was found 99.4% overall accuracy 
in a 10-fold cross validation test. We also obtained feedback 
from patients and relatives that have been useful to guide the 
development of a new version of the wearable, unobtrusive and 
adapted to the patient needs. 

Wearable Computing, Human Activity Recognition, e-Health 

I. INTRODUÇÃO 

Com o aumento da expectativa de vida e o 
envelhecimento da população, tem se tornado um desafio o 
desenvolvimento de tecnologias que possibilitem uma vida 
mais independente e segura para idosos e doentes crônicos 
[1][2][3]. Em pesquisas recentes busca-se investigar 
tecnologias para apoiar o acompanhamento de idosos e 
doentes crônicos em suas casas, de modo a evitar o impacto 
social, os riscos e os custos de uma internação [3]. Sistemas 
de e-health são alternativas tecnológicas frequentemente 
propostas nessas pesquisas pois possibilitam a colaboração 
dos parentes e profissionais no acompanhamento de idosos e 
doentes crônicos fora do ambiente hospitalar. 

Sistemas e-health possibilitam o registro de dados para 
posterior  avaliação médica, como a rotina de atividades e a 
frequência de batimentos cardíacos. Esse registro é um dado 
valioso para o médico que faz um tratamento continuado do 
paciente. Sistemas de e-health também são potencialmente 
úteis para possibilitar a identificação de situações na rotina 
que desencadeiam crises ou riscos para o paciente 
monitorado. 

Wearable computers são usados em alguns sistemas de e-
health para o monitoramento dos sinais vitais, temperatura 
corporal, frequência cardíaca, nível glicêmico, atividades 
físicas, entre outras medidas importantes para o 
acompanhamento de um paciente [4][5]. Os dados obtidos a 
partir de wearables possibilitam também a emissão de alertas 
em casos de emergência, como quedas ou a mudança da 
frequência cardíaca para valores de atenção estipulados pelo 

médico [6]. Uma abordagem alternativa ao uso de wearables 
é sensoriar o ambiente. Na Seção 2 são discutidos os pontos 
fortes e fracos das duas abordagens de sensoriamento 
possuem, bem como são listadas pesquisas realizadas com 
cada abordagem. 

Um desafio para o desenvolvimento de wearables de 
suporte a e-health é a interpretação dos dados primários 
obtidos dos sensores. Essa interpretação pode ser feita por 
meio de regras definidas numa especificação formal ou por 
meio de técnicas de aprendizado de máquina e mineração de 
dados. O objetivo é desenvolver classificadores para 
alimentar sistemas de e-health com informações tratadas, 
obtidas a partir de dados primários dos sensores. Uma 
revisão da literatura sobre classificadores para atividades 
humanas a partir de dados de acelerômetros é apresentada na 
Seção 3. Com as orientações obtidas na revisão de literatura 
foi construído um wearable e desenvolvido um classificador 
para os dados obtidos dos sensores no Wearable. O wearable 
e o classificador também são apresentados na Seção 3. 

O contexto para o desenvolvimento dessa pesquisa é o 
projeto de pesquisa Ubilife (FAPERJ), no qual são 
investigadas tecnologias para auxiliar parentes, amigos ou 
profissionais da área médica responsáveis pela assistência a 
idosos fora do ambiente hospitalar. O sistema Virtual 
Caregiver foi desenvolvido para apoiar o acompanhamento 
de uma paciente de 86 anos, diagnosticada com Alzheimer e 
arritmia cardíaca. O sistema tem 3 módulos: aplicativo web 
para a rede social Facebook, aplicativo para smartphone com 
sistema operacional Android e wearable, usado para coleta 
de dados do paciente. O sistema é contextualizado no projeto 
de pesquisa e apresentado na Seção 4. Conclusão e trabalhos 
futuros dessa pesquisa são discutidos na Seção 5. 

II. SENSORIAMENTO NO AMBIENTE E NO CORPO

O reconhecimento de atividades tem sido usado em 
diversas aplicações como esportiva, entretenimento e saúde. 
A coleta dos dados necessários para o reconhecimento é feita 
por meio de duas abordagens principais: o sensoriamento do 
ambiente e o sensoriamento do corpo humano. Cada 
abordagem tem pontos fortes e fracos e a decisão sobre o uso 
de uma das abordagens está relacionada com a aplicação 
pretendida do reconhecimento de atividades. Para esportes e 
atividades realizadas em ambiente controlado as duas 
abordagens são viáveis. Para ambientes não controlados, 
como o tráfego de pedestres em via pública, a abordagem de 
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sensoriamento do corpo apresenta consideráveis vantagens 
em relação ao sensoriamento do ambiente. 

A. Sensoriamento do ambiente  
Quando se usa o monitoramento do ambiente é preciso 

equipar o local com uma infra-estrutura que possibilite a 
coleta de dados. O monitoramento dos indivíduos é 
geralmente realizado por meio de técnicas de visão 
computacional, embora também seja realizado por meio da 
outras abordagens, como triangulação e trilateração em 
sistemas emissores / receptores.  

Para o monitoramento de atletas em atividades 
esportivas, uma abordagem comum aplicada por treinadores 
é filmar os movimentos do atleta com uma câmera 2D e usar 
um sistema de digitalização do vídeo para realizar a anotação 
offline quadro a quadro das atividades. Essa abordagem de 
registro e anotação de vídeos possibilita a geração de 
datasets para métodos de aprendizagem supervisionada por 
meio de processamento de imagens.  

Uma alternativa é equipar o ambiente com sistemas de 
rastreamento de indivíduos baseados em marcadores, com os 
quais são obtidos dados sobre diferentes partes do esqueleto 
(por exemplo, posição das articulações em 3 eixos – x, y e z). 
O sensor Microsoft Kinect tem sido usado recentemente para 
rastreamento tridimensional de 26 articulações do corpo 
humano [7].  No trabalho de Beetz, Kirchlechner e Lames 
[8] um sistema baseado em threshold é usado para analisar 
partidas de futebol com rastreamento dos jogadores por meio 
de um receptor que triangula informações de emissores de 
micro ondas posicionados nas caneleiras e na bola. Sobre o 
uso conjugado de câmeras e marcadores, há o trabalho de 
Hey e Carter [9] no qual uma mesa de tênis é usada para 
registrar os pontos de impacto e a bola é rastreada por meio 
de câmera de vídeo e sensores de vibração. 

A principal vantagem de usar sensores no ambiente é não 
fixar qualquer equipamento no corpo do indivíduo. Em 
alguns casos pode ser necessário marcar o indivíduo 
visualmente, mas esses marcadores visuais são quase 
imperceptíveis (geralmente uma cor diferente na roupa) 
como no caso de [8]. Uma desvantagem no sensoriamento do 
ambiente é a necessidade de uma área coberta pelo sistema 
de rastreamento, o que torna essa abordagem difícil de ser 
aplicada em ambientes externos como avenidas, sendo mais 
indicada para ambientes internos e controlados, como sala de 
hospital, quadra de tênis e campo de futebol. 

B. Sensoriamento do corpo 
Na abordagem de sensoriamento do corpo, as unidades 

de medição de força inercial (IMU – Inertial Measurement 
Units) são os sensores mais usados. As IMUs são geralmente 
equipadas com 6 ou 9 graus de liberdade, o que significa 6 
ou 9 medidas (acelerômetro, giroscópio e magnetômetro 
triaxiais) coletadas simultaneamente, mas é também muito 
comum o uso de acelerômetros triaxiais isoladamente.  

Atualmente é possível encontrar à venda pulseiras e 
relógios com funcionalidades para sensoriamento, mas os 
sensores são geralmente restritos a monitores de frequência 
cardíaca e pedômetros. Uma abordagem recente na indústria 
são pulseiras que inferem o nível de atividade do indivíduo 

por meio das leituras de um acelerômetro. Os dados obtidos 
dos sensores são geralmente classificados como “em 
atividade” ou “em repouso” e as inferências são feitas por 
regras préestabelecidas (threshold-based decision). O 
objetivo, em geral, é motivar o indivíduo à prática de 
atividades físicas. Um produto disponível na indústria é o 
Nike +iPod  no qual são combinados dados de sensores com 
as músicas tocadas no iPod do indivíduo. Como resultado de 
pesquisas, o MPTrain é um sistema que compila uma lista de 
músicas por meio do mapeamento de características das 
músicas, nível de atividade e resposta fisiológica do atleta 
[10]. Outro exemplo é o MOPET, um sistema que usa GPS 
(Global Positioning System), acelerômetros e medidores de 
frequência cardíaca para prover motivação e avisos para o 
indivíduo por meio de um agente 3D em um dispositivo 
móvel [11]. 

Na área de saúde, o reconhecimento de atividades com 
wearables tem sido aplicado para acompanhar o consumo de 
energia na realização de atividades físicas, como é o exemplo 
do wearable “SensVest” de Knight et al. [12]. Outro trabalho 
na área de saúde é o de Jovanov et al., [13], no qual uma rede 
ZigBee de sensores sem fio é implementada para possibilitar 
análise em tempo real dos dados dos sensores e prover 
feedback para o usuário. O sistema dispara alertas conforme 
o nível de atividade, estado geral do usuário e condições 
ambientais. Todas as informações geradas pelo sistema são 
armazenadas em servidores junto com o registro do paciente. 

Na área de atividades esportivas, um exemplo é o 
dispositivo wearable para esqui, desenvolvido por 
Michahelles and B. Schiele [14], no qual são usados 
resistores de força, um acelerômetro e um giroscópio para 
medir respectivamente a pressão nos pés, movimento e 
rotação do esquiador. Por fim, no domínio de levantamento 
de peso, Chang et al. [15]  propõem o uso de sensores na 
luva e na cintura do indivíduo para identificar e contar os 
exercícios realizados.  

A principal vantagem da abordagem wearable é não 
pressupor a existência de infraestrutura no ambiente, o que 
possibilita ao indivíduo realizar suas atividades em qualquer 
ambiente. Com relação aos dispositivos computacionais 
tradicionais (computadores, tablets e smartphones), a 
vantagem do wearable é não exigir a atenção do usuário, 
uma vez que o uso do computador não é necessariamente a 
atividade primária de um indivíduo. As principais 
desvantagens são a necessidade de vestir equipamentos, o 
que exige um bom projeto do wearable, a possibilidade de 
descalibragem dos sensores, o que demanda a atuação do 
usuário para reconhecer a descalibragem e disparar uma 
recalibragem, e consumo de bateria – que ainda é objeto de 
estudos de otimização. 

III. CLASSIFICADORES PARA DADOS DE ACELERÔMETROS 

Nessa seção são apresentados resultados parciais de uma 
revisão sistemática da literatura sobre o reconhecimento de 
atividades, que foram usados para apoiar a construção do 
dispositivo wearable e o desenvolvimento do classificador, 
também apresentados nessa seção. Outros dados dessa 
revisão são apresentados em [16].  
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No total foram coletadas 165.633 instâncias. A 
distribuição das instâncias entre as atividades é ilustrada na 
Figura 3. 

Figura 3. Frequencia das instâncias  

Após a coleta dos dados, os arquivos foram concatenados 
e pré-processados para diferentes formatos, conforme a 
orientação de [24]. O objetivo é possibilitar a investigação de 
vários modelos, como SVM, redes neurais, árvores de 
decisão. Para alguns modelos foi preciso normalizar os dados 
e converter features nominais para numéricas.  

C. Extração de features 
Os dados foram lidos a uma frequência de 10Hz (aprox. 

10 leituras por segundo). Para cada um dos 4 acelerômetros 
as medidas de aceleração nos eixos x, y e z foram as features 
primárias estabelecidas. A partir desses valores, foram 
calculadas features derivadas, como a rotação sobre os eixos 
(roll e pitch) e o módulo do vetor de aceleração. 

Sobre a lista de features primárias e derivadas foi gerada 
uma janela de tempo de 1s a partir da qual várias features 
foram calculadas, todas resultantes de medidas de estatística 
descritiva sobre os dados da janela de tempo. Cada janela é 
sobreposta com um deslocamento de 150ms em relação à 
anterior. As features geradas são listadas a seguir: 
� Para cada acelerômetro: as leituras da aceleração nos 

eixos x, y, e z; a rotação sobre os ângulos x e y e o 
módulo do vetor de aceleração; 

� Variância de roll, pitch e do modulo do vetor para todas 
as instâncias da janela de tempo de 1s; 

� Uma coluna com a discretização do modulo do vetor de 
aceleração de cada sensor. As faixas para a discretização 
foram definidas após análise estatística comparando os 
dados das 5 classes; 

D. Seleção de features 
Para diminuir o uso de features redundantes e selecionar 

as features mais informativas em relação às classes, foi usado 
o algoritmo de seleção de Mark Hall [26], baseado em 
correlação. O algoritmo foi configurado para adotar o 
método BestFirst, que tem uma estratégia gulosa baseada em 
backtracking. O resultado da seleção é o menor conjunto de 
features que traz o maior ganho de informação. 

As 12 features selecionadas por meio desse procedimento 
foram: (1) sensor da cintura: discretização do modulo do 
vetor de aceleração, variância do pitch e variância do roll; (2) 
Sensor posicionado na coxa direita: modulo do vetor de 

aceleração, discretização e a variância do pitch; (3) Sensor 
no tornozelo direito: variância do pitch e variância do roll; 
(4) Sensor no braço direito: discretização do módulo de 
aceleração. De todos os sensores: a média aritmética do 
módulo do vetor entre as leituras da janela de tempo. 

E. Classificador para atividades humanas 
Com o dataset gerado foram realizados diversos testes de 

validação cruzada (67 no total) envolvendo os algoritmos de 
aprendizagem supervisionada:  Support Vector Machine 
(SVM), Voted Perceptron (estratégia one-against-all), 
MultiLayer Perceptron (Back Propagation) e Árvore de 
Decisão C4.5. O melhor resultado obtido foi de 98.1% de 
acerto com a árvore de decisão C4.5, de Ross Quilan [27], 
configurada com fator de confidência de 0.15 e mínimo de 
100 instâncias por folha. A árvore C4.5 é uma evolução 
proposta por Quilan ao algoritmo ID3 (Iterative 
Dichotomiser 3) e sua principal vantagem sobre o ID3 é a 
poda mais eficiente. 

Para obter maior percentual de acerto foi criado um 
comitê AdaBoost [28] com 10 árvores C4.5. Segundo o 
autor, o método AdaBoost “gera distribuições concentradas 
nos exemplos mais difíceis para possibilitar a um algoritmo 
fraco obter melhor desempenho nas partes mais difíceis do 
espaço amostral” (tradução nossa). De maneira simplificada, 
com o uso de AdaBoost, o algoritmo C4.5 foi executado com 
diferentes distribuições a cada iteração, privilegiando as 
instâncias mais difíceis de predizer. 

O desempenho geral obtido com o comitê AdaBoost foi 
de 99.4% de acerto (media ponderada) no modo de teste de 
validação cruzada (10-fold). A precisão obtida por classe foi: 
“sitting” 100%, “sitting down” 96.9%, “standing” 99.8%, 
“standing up” 96.9%, e “walking” 99.8%. 

IV. VIRTUAL CAREGIVER: COLABORAÇÃO PARA 
ASSISTÊNCIA FORA DO HOSPITAL

O sistema Virtual Caregiver foi proposto no contexto do 
projeto de pesquisa Ubilife. No Ubilife são investigadas 
tecnologias para auxiliar parentes, amigos ou profissionais da 
área médica responsáveis pela assistência a idosos fora do 
ambiente hospitalar. Um dos sistemas no contexto do Ubilife é 
um AAL (Ambient Assisted Living) colaborativo que usa o 
mundo virtual OpenSIM como plataforma para apoiar para o 
monitoramento constante de um idoso, além de dispor de 
serviços de lembretes e alarmes [29]. Nesse AAL, coletam-se 
dados por meio do sensoriamento do ambiente para 
correlacionar os objetos e o indivíduo, e obter dados como a 
localização do usuário e os objetos com os quais interage. 

O Virtual Caregiver foi implementado para possibilitar o uso 
de dispositivos móveis, como smartphones e tablets, e também a 
rede social Facebook, dada a sua popularidade recente. O 
trabalho de [30] é o principal trabalho relacionado. O cenário de 
aplicação é com a família de uma paciente de 86 anos, 
diagnosticada com Alzheimer e arritmia cardíaca. Um dos 
parentes comentou seu interesse na tecnologia de 
monitoramento: “(...) me interessei pois a minha avó é uma 
senhora idosa de 86 anos com Alzheimer e cardíaca [sic] e  
uma vez ela se perdeu em Botafogo, sem ter como se comunicar, 
sem lembrar onde estava e quem eram seus parentes.”
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reconhecimento de atividades e foram desenvolvidos um 
classificador para reconhecimento de atividades, um wearable 
usado na coleta de dados, e o sistema Virtual Caregiver.  

O bom resultado obtido no desenvolvimento do classificador 
motivou a continuidade da pesquisa e o desenvolvimento da nova 
versão do wearable, que foi adaptado às necessidades da paciente. 
A nova versão do wearable é mais discreta e possibilita também 
coletar a frequência de batimentos cardíacos, não previsto na 
primeira versão. Como trabalhos futuros, será feita a liberação dos 
aplicativos do Facebook e Android para uso pelos parentes. Espera-
se avaliar a usabilidade dos mecanismos de interface e se a 
colaboração dos parentes e médicos é útil para o acompanhamento 
da paciente. 
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